27 research outputs found

    Role of Cbl-associated protein/ponsin in receptor tyrosine kinase signaling and cell adhesion

    Get PDF
    The Cbl-associated protein/ponsin (CAP) is an adaptor protein that contains a so-called Sorbin homology (SoHo) domain and three Src homology 3 (SH3) domains which are engaged in diverse protein-protein interactions. CAP has been shown to function in the regulation of the actin cytoskeleton and cell adhesion and to be involved in the differentiation of muscle cells and adipocytes. In addition, it participates in signaling pathways through several receptor tyrosine kinases such as insulin and neurotrophin receptors. In the last couple of years, several studies have shed light on the details of these processes and identified novel interaction partners of CAP. In this review, we summarize these recent findings and provide an overview on the function of CAP especially in cell adhesion and membrane receptor signaling

    Ltbp4 regulates Pdgfr beta expression via TGF beta-dependent modulation of Nrf2 transcription factor function

    Get PDF
    Latent transforming growth factor beta binding protein 4 (LTBP4) belongs to the fibrillin/LTBP family of proteins and plays an important role as a structural component of extracellular matrix (ECM) and local regulator of TGF beta signaling. We have previously reported that Ltbp4S knock out mice (Ltbp4S-/-) develop centrilobular emphysema reminiscent of late stage COPD, which could be partially rescued by inactivating the antioxidant protein Sestrin 2 (Sesn2). More recent studies showed that Sesn2 knock out mice upregulate Pdgfr beta-controlled alveolar maintenance programs that protect against cigarette smoke induced pulmonary emphysema. Based on this, we hypothesized that the emphysema of Ltbp4S-/- mice is primarily caused by defective Pdgfr beta signaling. Here we show that LTBP4 induces Pdgfr beta signaling by inhibiting the antioxidant Nr12/Keap1 pathway in a TGF beta-dependent manner. Overall, our data identified Ltbp4 as a major player in lung remodeling and injury repair. (C) 2016 The Authors. Published by Elsevier B.V.Peer reviewe

    Polarization of Human Macrophages by Interleukin-4 Does Not Require ATP-Citrate Lyase

    Get PDF
    Macrophages exposed to the Th2 cytokines interleukin (IL) IL-4 and IL-13 exhibit a distinct transcriptional response, commonly referred to as M2 polarization. Recently, IL-4-induced polarization of murine bone marrow-derived macrophages (BMDMs) has been linked to acetyl-CoA levels through the activity of the cytosolic acetyl-CoA-generating enzyme ATP-citrate lyase (ACLY). Here, we studied how ACLY regulated IL-4-stimulated gene expression in human monocyte-derived macrophages (MDMs). Although multiple ACLY inhibitors attenuated IL-4-induced target gene expression, this effect could not be recapitulated by silencing ACLY expression. Furthermore, ACLY inhibition failed to alter cellular acetyl-CoA levels and histone acetylation. We generated ACLY knockout human THP-1 macrophages using CRISPR/Cas9 technology. While these cells exhibited reduced histone acetylation levels, IL-4-induced gene expression remained intact. Strikingly, ACLY inhibitors still suppressed induction of target genes by IL-4 in ACLY knockout cells, suggesting off-target effects of these drugs. Our findings suggest that ACLY may not be the major regulator of nucleocytoplasmic acetyl-CoA and IL-4-induced polarization in human macrophages. Furthermore, caution should be warranted in interpreting the impact of pharmacological inhibition of ACLY on gene expression

    Metabolic plasticity is an essential requirement of acquired tyrosine kinase inhibitor resistance in Chronic myeloid leukemia

    Get PDF
    Tyrosine kinase inhibitors (TKIs) are currently the standard chemotherapeutic agents for the treatment of chronic myeloid leukemia (CML). However, due to TKI resistance acquisition in CML patients, identification of new vulnerabilities is urgently required for a sustained response to therapy. In this study, we have investigated metabolic reprogramming induced by TKIs independent of BCR-ABL1 alterations. Proteomics and metabolomics profiling of imatinib-resistant CML cells (ImaR) was performed. KU812 ImaR cells enhanced pentose phosphate pathway, glycogen synthesis, serine-glycine-one-carbon metabolism, proline synthesis and mitochondrial respiration compared with their respective syngeneic parental counterparts. Moreover, the fact that only 36% of the main carbon sources were utilized for mitochondrial respiration pointed to glycerol-phosphate shuttle as mainly contributors to mitochondrial respiration. In conclusion, CML cells that acquire TKIs resistance present a severe metabolic reprogramming associated with an increase in metabolic plasticity needed to overcome TKI-induced cell death. Moreover, this study unveils that KU812 Parental and ImaR cells viability can be targeted with metabolic inhibitors paving the way to propose novel and promising therapeutic opportunities to overcome TKI resistance in CML

    The molecular networks of cell-cell adhesion: functional implications of the membrane raft associated proteins flotillin-1 and flotillin-2

    No full text
    Cell-cell adhesion is an essential process during the development of multicellular organisms. It is based on various cellular junctions and ensures a tight contact between neighboring cells, enabling interactive exchanges necessary for morphological and functional differentiation and maintaining the homeostasis of healthy tissue organization. Two important types of cell-cell adhesions are the adherens junction (AJ) and the desmosome which link the actin cytoskeleton and intermediate filaments to cadherin-based adhesion sites. The core of these structures is composed of single-span transmembrane proteins of the cadherin superfamily which include, among other members, the classical cadherins, e.g. E-cadherin, as well as the desmosomal cadherins, e.g. desmoglein-3. The cytoplasmic domains of the desmosomal and classical cadherins enable interactions with proteins of the catenin family. Classical cadherins preferentially associate with β-catenin and p120-catenin, whereas desmosomal cadherins bind to γ-catenin and plakophilins. Intriguingly, γ-catenin, also known as plakoglobin, is so far the only protein known to be present both in the AJ and the desmosome. In this study, we showed that the two homologous, membrane raft-associated proteins flotillin-1 and flotillin-2 associate with core proteins of the AJ and the desmosome in vitro and in vivo. In confluent human, non-malignant epithelial MCF10A cells and human skin cryosections, flotillin-2 colocalized with E-cadherin, desmoglein-3 and γ-catenin at cell-cell contact sites, whereas flotillin-1 showed barely any overlap with these proteins. In addition, we detected a colocalization of both flotillins with the actin-binding protein α-actinin in membrane ruffles in subconfluent and at cell-cell contact sites in confluent MCF10A cells as well as in human skin cryosections. The interaction with α-actinin was later shown to be flotillin-1 dependent by performing indirect GST pulldown experiments with purified α-actinin-1-GST in MCF10A cell lysates. Since flotillin-2 strongly colocalized with cell-cell junctions, this suggested that flotillins might be found in complex with cell adhesion proteins. Thus, we performed coimmunoprecipitation experiments in murine skin lysates and various cell lines of epithelial origin, such as human breast cancer MCF7 cells, human keratinocyte HaCaT cells and primary mouse keratinocytes. These experiments demonstrated that flotillins, especially flotillin-2, coprecipitated with E-cadherin, desmosomal cadherins and γ-catenin in relation to the respective cell type and the maturation status of these cell-cell adhesion structures. However, since γ-catenin is so far the only protein known to be present in the AJ and the desmosome, we further assumed that the complex formation of flotillins with cell adhesion structures is mediated by γ-catenin. For this, we performed indirect GST pulldown experiments in MCF10A cell lysates with bacterially expressed, purified flotillin-1-GST, flotillin-2-GST and γ-catenin-GST and were able to verify the complex formation of adhesion proteins and flotillins in vitro. To further test if the interaction of γ-catenin and flotillins is a direct one, we used purified flotillin-1-GST or flotillin-2-GST and γ-catenin-MBP fusion proteins. Both flotillins directly interacted with γ-catenin in this in vitro assay. In addition, mapping of the interaction domains in γ-catenin by using GST fusion proteins carrying different parts of γ-catenin suggested that flotillins bind to a discontinuous γ-catenin binding domain which consists of a Major determinant around ARM domains 6-12, most likely with a major contribution of the ARM domain 7, and possibly including the NT part of γ-catenin. To study the effect of flotillin depletion on cell-cell adhesion, we generated stable MCF10A cell lines in which flotillins were knocked down by means of lentiviral shRNAs. Staining of E-cadherin and γ-catenin in these cells showed that the localization at the cell-cell borders was significantly altered after flotillin-2 depletion, which pointed to a role for flotillin-2 in the formation of cell-cell adhesion structures in epithelial cells. Furthermore, isolation of detergent resistant membranes (DRMs) from these cells demonstrated that upon depletion of flotillin-2, a significant amount of E-cadherin and γ-catenin shifted into raft fractions. On the contrary, no change was detected in flotillin-1 knockdown cells. These observations point to a functional role of flotillin-2 in the regulation of raft association of cell-cell adhesion proteins. To gain more insight into the in vivo relevance of our findings, we next studied the function of flotillins in the skin of Flot2-/- knockout mice. Analysis of lysates prepared from the skin of one year old female animals revealed an increased expression of E-cadherin, desmoglein-1 and γ-catenin but not β-catenin, implicating that specific adhesion proteins are upregulated in flotillin-2 knockout skin. Since flotillins are tightly associated with membrane microdomains we next studied the interaction of flotillin-2 with membrane cholesterol. Using the photoreactive cholesterol analog azocholestanol, we were able to show that flotillin-2 and cholesterol directly interacted. In addition, previous studies speculated that flotillin-2 interacts with cholesterol via two putative cholesterol recognition/interaction amino acid consensus (CRAC) motifs. Analysis of the flotillin-2 sequence revealed that flotillin-2 actually contains four putative CRAC motifs. However, using various flotillin-2 CRAC mutant GFP fusion proteins, we were able to show that none of the putative CRAC motifs is functional, which suggested that flotillin-2 interacts with membrane cholesterol, e.g., via posttranslational modifications, such as myristoylation and palmitoylation which were previously shown to be essential for membrane association of flotillin proteins

    Flotillins in Receptor Tyrosine Kinase Signaling and Cancer

    No full text
    Flotillins are highly conserved proteins that localize into specific cholesterol rich microdomains in cellular membranes. They have been shown to be associated with, for example, various signaling pathways, cell adhesion, membrane trafficking and axonal growth. Recent findings have revealed that flotillins are frequently overexpressed in various types of human cancers. We here review the suggested functions of flotillins during receptor tyrosine kinase signaling and in cancer. Although flotillins have been implicated as putative cancer therapy targets, we here show that great caution is required since flotillin ablation may result in effects that increase instead of decrease the activity of specific signaling pathways. On the other hand, as flotillin overexpression appears to be related with metastasis formation in certain cancers, we also discuss the implications of these findings for future therapy aspects

    Amino acid sensory complex proteins in mTORC1 and macroautophagy regulation

    No full text
    Autophagy is the highly conserved catabolic process, which enables the survival of a cell under unfavorable environmental conditions. In a constantly changing environment, cells must be capable of dynamically oscillating between anabolism and catabolism in order to maintain cellular homeostasis. In this context, the activity of the mechanistic Target Of Rapamycin Complex 1 (mTORC1) is of major importance. As a central signaling node, it directly controls the process of macroautophagy and thus cellular metabolism. Thereby, the control of mTORC1 is equally crucial as the regulation of cellular homeostasis itself, whereby particular importance is attributed to amino acid sensory proteins. In this review, we describe the recent findings of macroautophagy and mTORC1 regulation by upstream amino acid stimuli in different subcellular localizations. We highlight in detail which proteins of the sensor complexes play a specific role in this regulation and point out additional non-canonical functions, e.g. in the regulation of macroautophagy, which have received little attention so far

    CRISPR/Cas9-mediated generic protein tagging in mammalian cells

    No full text
    Systematic protein localization and protein-protein interaction studies to characterize specific protein functions are most effectively performed using tag-based assays. Ideally, protein tags are introduced into a gene of interest by homologous recombination to ensure expression from endogenous control elements. However, inefficient homologous recombination makes this approach difficult in mammalian cells. Although gene targeting efficiency by homologous recombination increased dramatically with the development of designer endonuclease systems such as CRISPR/Cas9 capable of inducing DNA double-strand breaks with unprecedented accuracy, the strategies still require synthesis or cloning of homology templates for every single gene. Recent developments have shown that endogenous protein tagging can be achieved efficiently in a homology independent manner. Hence, combinations between CRISPR/Cas9 and generic tag-donor plasmids have been used successfully for targeted gene modifications in mammalian cells. Here, we developed a tool kit comprising a CRISPR/Cas9 expression vector with several EGFP encoding plasmids that should enable tagging of almost every protein expressed in mammalian cells. By performing protein-protein interaction and subcellular localization studies of mTORC1 signal transduction pathway-related proteins expressed in HEK293T cells, we show that tagged proteins faithfully reflect the behavior of their native counterparts under physiological conditions
    corecore