31 research outputs found

    Sildenafil attenuates pulmonary arterial pressure but does not improve oxygenation during ARDS

    Get PDF
    OBJECTIVE: Pulmonary hypertension is a characteristic feature of acute respiratory distress syndrome (ARDS) and contributes to mortality. Administration of sildenafil in ambulatory patients with pulmonary hypertension improves oxygenation and ameliorates pulmonary hypertension. Our aim was to determine whether sildenafil is beneficial for patients with ARDS. DESIGN: Prospective, open-label, multicenter, interventional cohort study. SETTING: Medical-surgical ICU of two university hospitals. PATIENTS: Ten consecutive patients meeting the NAECC criteria for ARDS. INTERVENTIONS: A single dose of 50 mg sildenafil citrate administered via a nasogastric tube. MAIN RESULTS: Administration of sildenafil in patients with ARDS decreased mean pulmonary arterial pressure from 25 to 22 mmHg (P = 0.022) and pulmonary artery occlusion pressure from 16 to 13 mmHg (P = 0.049). Systemic mean arterial pressures were markedly decreased from 81 to 75 mmHg (P = 0.005). Sildenafil did not improve pulmonary arterial oxygen tension, but resulted in a further increase in the shunt fraction. CONCLUSION: Although sildenafil reduced pulmonary arterial pressures during ARDS, the increased shunt fraction and decreased arterial oxygenation render it unsuitable for the treatment of patients with ARD

    Using system dynamics for collaborative design: a case study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In order to facilitate the collaborative design, system dynamics (SD) with a group modelling approach was used in the early stages of planning a new stroke unit. During six workshops a SD model was created in a multiprofessional group.</p> <p>Aim</p> <p>To explore to which extent and how the use of system dynamics contributed to the collaborative design process.</p> <p>Method</p> <p>A case study was conducted using several data sources.</p> <p>Results</p> <p>SD supported a collaborative design, by facilitating an explicit description of stroke care process, a dialogue and a joint understanding. The construction of the model obliged the group to conceptualise the stroke care and experimentation with the model gave the opportunity to reflect on care.</p> <p>Conclusion</p> <p>SD facilitated the collaborative design process and should be integrated in the early stages of the design process as a quality improvement tool.</p

    Multi-capillary column-ion mobility spectrometry (MCC-IMS) as a new method for the quantification of occupational exposure to sevoflurane in anaesthesia workplaces: an observational feasibility study

    Get PDF
    BACKGROUND: Occupational exposure to sevoflurane has the potential to cause health damage in hospital personnel. Workplace contamination with the substance mostly is assessed by using photoacoustic infrared spectrometry with detection limits of 10 ppbv. Multi-capillary column-ion mobility spectrometry (MCC-IMS) could be an alternative technology for the quantification of sevoflurane in the room air and could be even more accurate because of potentially lower detection limits. The aim of this study was to test the hypothesis that MCC-IMS is able to detect and monitor very low concentrations of sevoflurane (<10 ppbv) and to evaluate the exposure of hospital personnel to sevoflurane during paediatric anaesthesia and in the post anaesthesia care unit (PACU). METHODS: A MCC-IMS device was calibrated to several concentrations of sevoflurane and limits of detection (LOD) and quantification (LOQ) were calculated. Sevoflurane exposure of hospital personnel was measured at two anaesthesia workplaces and time-weighted average (TWA) values were calculated. RESULTS: The LOD was 0.0068 ppbv and the LOQ was 0.0189 ppbv. During paediatric anaesthesia the mean sevoflurane concentration was 46.9 ppbv (8.0 - 314.7 ppbv) with TWA values between 5.8 and 45.7 ppbv. In the PACU the mean sevoflurane concentration was 27.9 ppbv (8.0 – 170.2 ppbv) and TWA values reached from 8.3 to 45.1 ppbv. CONCLUSIONS: MCC-IMS shows a significantly lower LOD and LOQ than comparable methods. It is a reliable technology for monitoring sevoflurane concentrations at anaesthesia workplaces and has a particular strength in quantifying low-level contaminations of sevoflurane. The exposure of the personnel working in these areas did not exceed recommended limits and therefore adverse health effects are unlikely
    corecore