110 research outputs found

    Enhancement of Ti3C2 MXene Pseudocapacitance after Urea Intercalation Studied by Soft X ray Absorption Spectroscopy

    Get PDF
    MXenes have shown outstanding properties due to their highly active hydrophilic surfaces coupled with high metallic conductivity. Many applications rely on the intercalation between Ti3C2Tx Tx describes the OH, F and O surface terminations flakes by ions or molecules, which in turn might alter the Ti3C2Tx surface chemistry and electrochemical properties. In this work, we show that the capacitance, rate capability, and charge carrier kinetics in Ti3C2Tx MXene electrodes are remarkably enhanced after urea intercalation u Ti3C2Tx . In particular, the areal capacitance increased to 1100 mF cm2, which is 56 higher than that of pristine Ti3C2Tx electrodes. We attribute this dramatic improvement to changes in the Ti3C2Tx surface chemistry upon urea intercalation. The oxidation state and the oxygen bonding of individual Ti3C2Tx flakes before and after urea intercalation are probed by soft X ray absorption spectroscopy XAS at the Ti L and O K edges with 30 nm spatial resolution in vacuum. After urea intercalation, a higher Ti oxidation state is observed across the entire flake compared to pristine Ti3C2Tx. Additionally, in situ XAS of u Ti3C2Tx aqueous dispersions reveal a higher Ti oxidation similar to dry samples, while for pristine Ti3C2Tx the Ti atoms are significantly reduced in water compared to dry sample

    Interleukin-10 Producing Regulatory B Cells Transformed CD4+CD25− Into Tregs and Enhanced Regulatory T Cells Function in Human Leprosy

    No full text
    Regulatory B cells (Bregs) are known to exhibit their regulatory functions through interleukin-10 (IL-10) cytokine which suppress inflammation. There are only a few studies explaining the phenotype and functioning of these cells in contribution to host immunity in leprosy. Here, we evaluated the role of IL-10 producing Bregs in the pathogenesis of leprosy and assessed their immunoregulatory effects on Tregs and effector T cells. We found an increased frequency of Bregs and increased expression of their immune modulatory molecules (IL-10, FoxP3, and PDL-1) in leprosy patients. The potential immunoregulatory mechanism of Bregs was also investigated using MACS sorted Teff (CD4+CD25−) and Treg (CD4+CD25+) cells were cocultured with Bregs to elucidate the effects of Bregs on effector T and regulatory T cells. Cell coculture results showed that purified Bregs cells from leprosy patients convert CD4+CD25− cells into CD4+CD25+ cells. Cell coculture experiments also demonstrated that leprosy derived IL-10 producing Bregs enhance FoxP3 and PD-1 expression in Tregs and enhanced Tregs activity. Blocking of IL-10 receptor confirmed that IL-10 producing Breg has immunomodulatory effect on Tregs and effector T cells as effector T cells are not converted into Tregs and enhanced expression of FoxP3 and PD-1 was not observed on Tregs. Collectively, these findings demonstrate that IL-10 producing Breg cells play an important mechanism in controlling the immunopathogenesis of leprosy and have an immunomodulatory effect on Tregs and effector T cells. Our findings may pave way for novel targets of IL-10 producing Bregs for immunotherapy in leprosy patients

    Role of computed tomography imaging for transcatheter valvular repair/insertion

    Get PDF
    During the last decade, the development of transcatheter based therapies has provided feasible therapeutic options for patients with symptomatic severe valvular heart disease who are deemed inoperable. The promising results of many nonrandomized series and recent landmark trials have increased the number of percutaneous transcatheter valve procedures in high operative risk patients. Pre-procedural imaging of the anatomy of the aortic or mitral valve and their spatial relationships is crucial to select the most appropriate device or prosthesis and to plan the percutaneous procedure. Multidetector row computed tomography provides 3-dimensional volumetric data sets allowing unlimited plane reconstructions and plays an important role in pre-procedural screening and procedural planning. This review will describe the evolving role of multidetector row computed tomography in patient selection and strategy planning of transcatheter aortic and mitral valve procedures

    Health related quality of life measure in systemic pediatric rheumatic diseases and its translation to different languages: An international collaboration

    Get PDF
    Background: Rheumatic diseases in children are associated with significant morbidity and poor health-related quality of life (HRQOL). There is no health-related quality of life (HRQOL) scale available specifically for children with less common rheumatic diseases. These diseases share several features with systemic lupus erythematosus (SLE) such as their chronic episodic nature, multi-systemic involvement, and the need for immunosuppressive medications. HRQOL scale developed for pediatric SLE will likely be applicable to children with systemic inflammatory diseases. Findings: We adapted Simple Measure of Impact of Lupus Erythematosus in Youngsters (SMILEY) to Simple Measure of Impact of Illness in Youngsters (SMILY-Illness) and had it reviewed by pediatric rheumatologists for its appropriateness and cultural suitability. We tested SMILY-Illness in patients with inflammatory rheumatic diseases and then translated it into 28 languages. Conclusion: SMILY-Illness is a brief, easy to administer and score HRQOL scale for children with systemic rheumatic diseases. It is suitable for use across different age groups and literacy levels. SMILY-Illness with its available translations may be used as useful adjuncts to clinical practice and research

    Oxidation behavior of graphene-coated copper at intrinsic graphene defects of different origins

    Get PDF
    The development of ultrathin barrier films is vital to the advanced semiconductor industry. Graphene appears to hold promise as a protective coating; however, the polycrystalline and defective nature of engineered graphene hinders its practical applications. Here, we investigate the oxidation behavior of graphene-coated Cu foils at intrinsic graphene defects of different origins. Macro-scale information regarding the spatial distribution and oxidation resistance of various graphene defects is readily obtained using optical and electron microscopies after the hot-plate annealing. The controlled oxidation experiments reveal that the degree of structural deficiency is strongly dependent on the origins of the structural defects, the crystallographic orientations of the underlying Cu grains, the growth conditions of graphene, and the kinetics of the graphene growth. The obtained experimental and theoretical results show that oxygen radicals, decomposed from water molecules in ambient air, are effectively inverted at Stone-Wales defects into the graphene/Cu interface with the assistance of facilitators

    Healable Cellulose Iontronic Hydrogel Stickers for Sustainable Electronics on Paper

    Get PDF
    The authors acknowledge the support from FCT - Portuguese Foundation for Science and Technology through the Ph.D. scholarships SFRH/BD/126409/2016 (I.C.) and SFRH/BD/122286/2016 (J.M.). The authors would like to acknowledge the European Commission under project NewFun (ERC-StG-2014, GA 640598) and project SYNERGY (H2020-WIDESPREAD-2020-5, CSA, proposal no 952169). This work was also supported by the FEDER funds through the COMPETE 2020 Program and the National Funds through the FCT - Portuguese Foundation for Science and Technology under the Project No. POCI-01-0145-FEDER-007688, reference UID/CTM/50025, project CHIHC, reference PTDC/NAN-MAT/32558/2017. The authors would also like to thank their colleagues Daniela Gomes and Ana Pimentel from CENIMAT/i3N for the SEM and DSC-TGA measurements, respectively.Novel nature-based engineered functional materials combined with sustainable and economically efficient processes are among the great challenges for the future of mankind. In this context, this work presents a new generation of versatile flexible and highly conformable regenerated cellulose hydrogel electrolytes with high ionic conductivity and self-healing ability, capable of being (re)used in electrical and electrochemical devices. They can be provided in the form of stickers and easily applied as gate dielectric onto flexible indium–gallium–zinc oxide transistors, decreasing the manufacturing complexity. Flexible and low-voltage (<2.5 V) circuits can be handwritten on-demand on paper transistors for patterning of conductive/resistive lines. This user-friendly and simplified manufacturing approach holds potential for fast production of low-cost, portable, disposable/recyclable, and low-power ion-controlled electronics on paper, making it attractive for application in sensors and concepts such as the “Internet-on-Things.”.publishersversionpublishe

    The genetic basis of endometriosis and comorbidity with other pain and inflammatory conditions

    Get PDF
    Endometriosis is a common condition associated with debilitating pelvic pain and infertility. A genome-wide association study meta-analysis, including 60,674 cases and 701,926 controls of European and East Asian descent, identified 42 genome-wide significant loci comprising 49 distinct association signals. Effect sizes were largest for stage 3/4 disease, driven by ovarian endometriosis. Identified signals explained up to 5.01% of disease variance and regulated expression or methylation of genes in endometrium and blood, many of which were associated with pain perception/maintenance (SRP14/BMF, GDAP1, MLLT10, BSN and NGF). We observed significant genetic correlations between endometriosis and 11 pain conditions, including migraine, back and multisite chronic pain (MCP), as well as inflammatory conditions, including asthma and osteoarthritis. Multitrait genetic analyses identified substantial sharing of variants associated with endometriosis and MCP/migraine. Targeted investigations of genetically regulated mechanisms shared between endometriosis and other pain conditions are needed to aid the development of new treatments and facilitate early symptomatic intervention

    The genetic basis of endometriosis and comorbidity with other pain and inflammatory conditions

    Get PDF
    Endometriosis is a common condition associated with debilitating pelvic pain and infertility. A genome-wide association study meta-analysis, including 60,674 cases and 701,926 controls of European and East Asian descent, identified 42 genome-wide significant loci comprising 49 distinct association signals. Effect sizes were largest for stage 3/4 disease, driven by ovarian endometriosis. Identified signals explained up to 5.01% of disease variance and regulated expression or methylation of genes in endometrium and blood, many of which were associated with pain perception/maintenance (SRP14/BMF, GDAP1, MLLT10, BSN and NGF). We observed significant genetic correlations between endometriosis and 11 pain conditions, including migraine, back and multisite chronic pain (MCP), as well as inflammatory conditions, including asthma and osteoarthritis. Multitrait genetic analyses identified substantial sharing of variants associated with endometriosis and MCP/migraine. Targeted investigations of genetically regulated mechanisms shared between endometriosis and other pain conditions are needed to aid the development of new treatments and facilitate early symptomatic intervention
    corecore