227 research outputs found

    Ülevaade töötervishoiust ja tööohutusest Eesti põllumajanduses

    Get PDF

    Developing LCA-based benchmarks for sustainable consumption - for and with users

    Get PDF
    This article presents the development process of a consumer-oriented, illustrative benchmarking tool enabling consumers to use the results of environmental life cycle assessment (LCA) to make informed decisions. Active and environmentally conscious consumers and environmental communicators were identified as key target groups for this type of information. A brochure presenting the benchmarking tool was developed as an participatory, iterative process involving consumer focus groups, stakeholder workshops and questionnaire-based feedback. In addition to learning what works and what does not, detailed suggestions on improved wording and figures were obtained, as well as a wealth of ideas for future applications

    The Mutational Profile of Unicystic Ameloblastoma

    Get PDF
    BRAF V600E is the most common mutation in conventional ameloblastoma (AM) of the mandible. In contrast, maxillary AMs appear to harbor more frequently RAS, FGFR2, or SMO mutations. Unicystic ameloblastoma (UAM) is considered a less aggressive variant of ameloblastoma, amenable to more conservative treatment, and classified as a distinct entity. The aim of this study was to characterize the mutation profile of UAM (n = 39) and to compare it to conventional AM (n = 39). The associations between mutation status and recurrence probability were also analyzed. In the mandible, 94% of UAMs (29/31, including 8/8 luminal, 6/8 intraluminal, and 15/15 mural subtypes) and 74% of AMs (28/38) revealed BRAF V600E mutations. Among the BRAF wild-type cases, 1 UAM showed a missense SMO mutation (p.L412F), whereas 2 NRAS (p.Q61R), 2 HRAS (p.Q61R), and 2 FGFR2 (p.C383R) activating mutations were identified in AM. Of the 3 maxillary UAMs, only 1 revealed a BRAF V600E mutation. Taken together, our findings demonstrate high frequency of activating BRAF V600E mutations in both UAM and AM of the mandible. In maxillary UAMs, the BRAF V600E mutation prevalence appears to be lower as was shown for AM previously. It could therefore be argued that UAM and AM are part of the spectrum of the same disease. AMs without BRAF V600E mutations were associated with an increased rate of local recurrence (P = 0.0003), which might indicate that routine mutation testing also has an impact on prognosis.Peer reviewe

    The guanine nucleotide exchange factor VAV3 participates in ERBB4-mediated cancer cell migration

    Get PDF
    ERBB4 is a member of the epidermal growth factor receptor (EGFR)/ERBB subfamily of receptor tyrosine kinases that regulates cellular processes including proliferation, migration, and survival. ERBB4 signaling is involved in embryogenesis and homeostasis of healthy adult tissues, but also in human pathologies such as cancer, neurological disorders, and cardiovascular diseases. Here, an MS-based analysis revealed the Vav guanine nucleotide exchange factor 3 (VAV3), an activator of Rho family GTPases, as a critical ERBB4-interacting protein in breast cancer cells. We confirmed the ERBB4-VAV3 interaction by targeted MS and coimmunoprecipitation experiments and further defined it by demonstrating that kinase activity and Tyr-1022 and Tyr-1162 of ERBB4, as well as the intact phosphotyrosine-interacting SH2 domain of VAV3, are necessary for this interaction. We found that ERBB4 stimulates tyrosine phosphorylation of the VAV3 activation domain, known to be required for guanine nucleotide exchange factor (GEF) activity of VAV proteins. In addition to VAV3, the other members of the VAV family, VAV1 and VAV2, also coprecipitated with ERBB4. Analyses of the effects of overexpression of dominant-negative VAV3 constructs or shRNA-mediated down-regulation of VAV3 expression in breast cancer cells indicated that active VAV3 is involved in ERBB4-stimulated cell migration. These results define the VAV GEFs as effectors of ERBB4 activity in a signaling pathway relevant for cancer cell migration

    The Mutational Profile of Unicystic Ameloblastoma

    Get PDF
    BRAF V600E is the most common mutation in conventional ameloblastoma (AM) of the mandible. In contrast, maxillary AMs appear to harbor more frequently RAS, FGFR2, or SMO mutations. Unicystic ameloblastoma (UAM) is considered a less aggressive variant of ameloblastoma, amenable to more conservative treatment, and classified as a distinct entity. The aim of this study was to characterize the mutation profile of UAM ( n = 39) and to compare it to conventional AM ( n = 39). The associations between mutation status and recurrence probability were also analyzed. In the mandible, 94% of UAMs (29/31, including 8/8 luminal, 6/8 intraluminal, and 15/15 mural subtypes) and 74% of AMs (28/38) revealed BRAF V600E mutations. Among the BRAF wild-type cases, 1 UAM showed a missense SMO mutation (p.L412F), whereas 2 NRAS (p.Q61R), 2 HRAS (p.Q61R), and 2 FGFR2 (p.C383R) activating mutations were identified in AM. Of the 3 maxillary UAMs, only 1 revealed a BRAF V600E mutation. Taken together, our findings demonstrate high frequency of activating BRAF V600E mutations in both UAM and AM of the mandible. In maxillary UAMs, the BRAF V600E mutation prevalence appears to be lower as was shown for AM previously. It could therefore be argued that UAM and AM are part of the spectrum of the same disease. AMs without BRAF V600E mutations were associated with an increased rate of local recurrence ( P = 0.0003), which might indicate that routine mutation testing also has an impact on prognosis

    An unbiased in vitro screen for activating epidermal growth factor receptor mutations

    Get PDF
    Cancer tissues harbor thousands of mutations, and a given oncogene may be mutated at hundreds of sites. Yet, only a few of these mutations have been functionally tested. Here, we describe an unbiased platform for the functional characterization of thousands of variants of a single receptor tyrosine kinase (RTK) gene in a single assay. Our in vitro screen for activating mutations (iSCREAM) platform enabled rapid analysis of mutations conferring gain-of-function RTK activity promoting clonal growth. The screening strategy included a somatic model of cancer evolution and utilized a library of 7,216 randomly mutated epidermal growth factor receptor (EGFR) single-nucleotide variants, that were tested in murine lymphoid Ba/F3 cells. These cells depend on exogenous interleukin-3 (IL-3) for growth, but this dependency can be compensated by ectopic EGFR overexpression, enabling selection for gain-of-function EGFR mutants. Analysis of the enriched mutants revealed EGFR A702V, a novel activating variant that structurally stabilized the EGFR kinase dimer interface and conferred sensitivity to kinase inhibition by afatinib. As proof of concept for our approach, we recapitulated clinical observations and identified the EGFR L858R as the major enriched EGFR variant. Altogether iSCREAM enabled robust enrichment of 21 variants from a total of 7,216 EGFR mutations. These findings indicate the power of this screening platform for unbiased identification of activating RTK variants that are enriched under selection pressure in a model of cancer heterogeneity and evolution

    A dominant-negative effect drives selection of TP53 missense mutations in myeloid malignancies

    Get PDF
    TP53, which encodes the tumor suppressor p53, is the most frequently mutated gene in human cancer. The selective pressures shaping its mutational spectrum, dominated by missense mutations, are enigmatic, and neomorphic gain-of-function (GOF) activities have been implicated. We used CRISPR-Cas9 to generate isogenic human leukemia cell lines of the most common TP53 missense mutations. Functional, DNA-binding, and transcriptional analyses revealed loss of function but no GOF effects. Comprehensive mutational scanning of p53 single-amino acid variants demonstrated that missense variants in the DNA-binding domain exert a dominant-negative effect (DNE). In mice, the DNE of p53 missense variants confers a selective advantage to hematopoietic cells on DNA damage. Analysis of clinical outcomes in patients with acute myeloid leukemia showed no evidence of GOF for TP53 missense mutations. Thus, a DNE is the primary unit of selection for TP53 missense mutations in myeloid malignancies

    Small- bowel mucosal changes and antibody responses after low- and moderate-dose gluten challenge in celiac disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Due to the restrictive nature of a gluten-free diet, celiac patients are looking for alternative therapies. While drug-development programs include gluten challenges, knowledge regarding the duration of gluten challenge and gluten dosage is insufficient.</p> <p>We challenged adult celiac patients with gluten with a view to assessing the amount needed to cause some small-bowel mucosal deterioration.</p> <p>Methods</p> <p>Twenty-five celiac disease adults were challenged with low (1-3 g) or moderate (3-5g) doses of gluten daily for 12 weeks. Symptoms, small-bowel morphology, densities of CD3+ intraepithelial lymphocytes (IELs) and celiac serology were determined.</p> <p>Results</p> <p>Both moderate and low amounts of gluten induced small-bowel morphological damage in 67% of celiac patients. Moderate gluten doses also triggered mucosal inflammation and more gastrointestinal symptoms leading to premature withdrawals in seven cases. In 22% of those who developed significant small- intestinal damage, symptoms remained absent. Celiac antibodies seroconverted in 43% of the patients.</p> <p>Conclusions</p> <p>Low amounts of gluten can also cause significant mucosal deterioration in the majority of the patients. As there are always some celiac disease patients who will not respond within these conditions, sample sizes must be sufficiently large to attain to statistical power in analysis.</p
    corecore