11 research outputs found

    Identification of the nuclear export signal in the helix–loop–helix inhibitor Id1

    Get PDF
    AbstractId proteins play important roles in cellular differentiation and proliferation by negatively regulating basic helix–loop–helix transcription factors. Although their intracellular localization may change depending on the biological situation, little is known about the molecular determinants underlying such changes. Here we report the identification of a nuclear export signal (NES) in Id1. The identified NES was different from that of Id2, but had the ability to confine heterologous green fluorescent protein to the cytoplasm. Thus, our results indicate that the intracellular localization of Id1 is regulated differently from that of Id2

    Notch1 and Notch3 Instructively Restrict bFGF-Responsive Multipotent Neural Progenitor Cells to an Astroglial Fate

    Get PDF
    AbstractNotch1 has been shown to induce glia in the peripheral nervous system. However, it has not been known whether Notch can direct commitment to glia from multipotent progenitors of the central nervous system. Here we present evidence that activated Notch1 and Notch3 promotes the differentiation of astroglia from the rat adult hippocampus-derived multipotent progenitors (AHPs). Quantitative clonal analysis indicates that the action of Notch is likely to be instructive. Transient activation of Notch can direct commitment of AHPs irreversibly to astroglia. Astroglial induction by Notch signaling was shown to be independent of STAT3, which is a key regulatory transcriptional factor when ciliary neurotrophic factor (CNTF) induces astroglia. These data suggest that Notch provides a CNTF-independent instructive signal of astroglia differentiation in CNS multipotent progenitor cells

    Regulation of Id2 expression by CCAAT/enhancer binding protein β

    Get PDF
    Mice deficient for Id2, a negative regulator of basic helix–loop–helix (bHLH) transcription factors, exhibit a defect in lactation due to impaired lobuloalveolar development during pregnancy, similar to the mice lacking the CCAAT enhancer binding protein (C/EBP) β. Here, we show that Id2 is a direct target of C/EBPβ. Translocation of C/EBPβ into the nucleus, which was achieved by using a system utilizing the fusion protein between C/EBPβ and the ligand-binding domain of the human estrogen receptor (C/EBPβ-ERT), demonstrated the rapid induction of endogenous Id2 expression. In reporter assays, transactivation of the Id2 promoter by C/EBPβ was observed and, among three potential C/EBPβ binding sites found in the 2.3 kb Id2 promoter region, the most proximal element was responsible for the transactivation. Electrophoretic mobility shift assay (EMSA) identified this element as a core sequence to which C/EBPβ binds. Chromatin immunoprecipitation (ChIP) furthermore confirmed the presence of C/EBPβ in the Id2 promoter region. Northern blotting showed that Id2 expression in C/EBPβ-deficient mammary glands was reduced at 10 days post coitus (d.p.c.), compared with that in wild-type mammary glands. Thus, our data demonstrate that Id2 is a direct target of C/EBPβ and provide insight into molecular mechanisms underlying mammary gland development during pregnancy

    野生型Hfhllジェノミックローカスの人為的挿入によるヌードマウスにおける無毛症の回復

    Get PDF
    京都大学0048新制・課程博士博士(医学)甲第6736号医博第1836号新制||医||656(附属図書館)15808UT51-97-H120京都大学大学院医学研究科生理系専攻(主査)教授 芹川 忠夫, 教授 日合 弘, 教授 本庶 佑学位規則第4条第1項該当Doctor of Medical ScienceKyoto UniversityDA

    Regulation of Marginal Zone B Cell Development by MINT, a Suppressor of Notch/RBP-J Signaling Pathway

    Get PDF
    AbstractWe found that Msx2-interacting nuclear target protein (MINT) competed with the intracellular region of Notch for binding to a DNA binding protein RBP-J and suppressed the transactivation activity of Notch signaling. Although MINT null mutant mice were embryonic lethal, MINT-deficient splenic B cells differentiated about three times more efficiently into marginal zone B cells with a concomitant reduction of follicular B cells. MINT is expressed in a cell-specific manner: high in follicular B cells and low in marginal zone B cells. Since Notch signaling directs differentiation of marginal zone B lymphocytes and suppresses that of follicular B lymphocytes in mouse spleen, the results indicate that high levels of MINT negatively regulate Notch signaling and block differentiation of precursor B cells into marginal zone B cells. MINT may serve as a functional homolog of Drosophila Hairless
    corecore