1,303 research outputs found

    Polyimide weld bonding for titanium alloy joints

    Get PDF
    Two weld bonding processes were developed for joining titanium alloy; one process utilizes a weld-through technique and the other a capillary-flow technique. The adhesive used for the weld-through process is similar to the P4/A5F system. A new polyimide laminating resin, BFBI/BMPM, was used in the capillary-flow process. Static property information was generated for weld-bonded joints over the temperature range of 219 K (-65 F) to 561 K (+550 F) and fatigue strength information was generated at room temperature. Significant improvement in fatigue strength was demonstrated for weld-bonded joints over spot-welded joints. A demonstration was made of the applicability of the weld-through weld-bonding process for fabricating stringer stiffened skin panels

    Radiation testing of composite materials, in situ versus ex situ effects

    Get PDF
    The effect of post irradiation test environments on tensile properties of representative advanced composite materials (T300/5208, T300/934, C6000/P1700) was investigated. Four ply (+ or - 45 deg/+ or - 45 deg) laminate tensile specimens were exposed in vacuum up to a bulk dose of 1 x 10 to the 10th power rads using a mono-energetic fluence of 700 keV electrons from a Van de Graaff accelerator. Post irradiation testing was performed while specimens were being irradiated (in situ data), in vacuum after cessation of irradiation (in vacuo data), and after exposure to air (ex situ data). Room temperature and elevated temperature effects were evaluated. The radiation induced changes to the tensile properties were small. Since the absolute changes in tensile properties were small, the existance of a post irradiation test environment effect was indeterminate

    Human kin detection

    Get PDF
    Natural selection has favored the evolution of behaviors that benefit not only one's genes, but also their copies in genetically related individuals. These behaviors include optimal outbreeding (choosing a mate that is neither too closely related, nor too distant), nepotism (helping kin), and spite (hurting non-kin at a personal cost), and all require some form of kin detection or kin recognition. Yet, kinship cannot be assessed directly; human kin detection relies on heuristic cues that take into account individuals' context (whether they were reared by our mother, or grew up in our home, or were given birth by our spouse), appearance (whether they smell or look like us), and ability to arouse certain feelings (whether we feel emotionally close to them). The uncertainties of kin detection, along with its dependence on social information, create ample opportunities for the evolution of deception and self-deception. For example, babies carry no unequivocal stamp of their biological father, but across cultures they are passionately claimed to resemble their mother's spouse; to the same effect, neutral' observers are greatly influenced by belief in relatedness when judging resemblance between strangers. Still, paternity uncertainty profoundly shapes human relationships, reducing not only the investment contributed by paternal versus maternal kin, but also prosocial behavior between individuals who are related through one or more males rather than females alone. Because of its relevance to racial discrimination and political preferences, the evolutionary pressure to prefer kin to non-kin has a manifold influence on society at large

    Ground state spin and Coulomb blockade peak motion in chaotic quantum dots

    Full text link
    We investigate experimentally and theoretically the behavior of Coulomb blockade (CB) peaks in a magnetic field that couples principally to the ground-state spin (rather than the orbital moment) of a chaotic quantum dot. In the first part, we discuss numerically observed features in the magnetic field dependence of CB peak and spacings that unambiguously identify changes in spin S of each ground state for successive numbers of electrons on the dot, N. We next evaluate the probability that the ground state of the dot has a particular spin S, as a function of the exchange strength, J, and external magnetic field, B. In the second part, we describe recent experiments on gate-defined GaAs quantum dots in which Coulomb peak motion and spacing are measured as a function of in-plane magnetic field, allowing changes in spin between N and N+1 electron ground states to be inferred.Comment: To appear in Proceedings of the Nobel Symposium 2000 (Physica Scripta

    Pre-hospital emergency nurse specialist's experiences in caring for patients with non-specific chief complaints in the ambulance - A qualitative interview study

    Get PDF
    Background: Pre-hospital emergency nurse (PEN) specialists are faced with patients presenting with non-specific chief complaints (NSC) to the emergency medical service (EMS) on a daily basis. These patients are often elderly and one in three has a serious condition and their acuity is not recognized. Objective: The aim of the current study was to explore PEN specialists' experiences in caring for patients presenting with non-specific chief complaints. Design: A qualitative study design with eleven individual interviews of PENs, between 2018 and 2020. Qualitative content analysis was used. Results: The analyses generated three categories including subcategories. The categories were "Unexplained suffering". "Systematic approach and experience enhances medical safety". "Organizational processes can be optimized". The relation between the categories compiled as 'In-depth systematic assessment is perceived to reduce suffering and increases patient safety. Conclusion: The PENs experiences in caring for patients presenting with non-specific chief complaints show that an in-depth systematic assessment may lead to a meaningful caring encounter which enables the identification of the cause of the chief complaint. Experience and a systematic approach were considered as essential to enhance medical safety. This could be strengthened through feedback on the nurse's care provided by care managers and employers. To optimize organizational processes, the development of the opportunity to convey the patient to different levels of care can be an important component.Peer reviewe

    Spin and e-e interactions in quantum dots: Leading order corrections to universality and temperature effects

    Full text link
    We study the statistics of the spacing between Coulomb blockade conductance peaks in quantum dots with large dimensionless conductance g. Our starting point is the ``universal Hamiltonian''--valid in the g->oo limit--which includes the charging energy, the single-electron energies (described by random matrix theory), and the average exchange interaction. We then calculate the magnitude of the most relevant finite g corrections, namely, the effect of surface charge, the ``gate'' effect, and the fluctuation of the residual e-e interaction. The resulting zero-temperature peak spacing distribution has corrections of order Delta/sqrt(g). For typical values of the e-e interaction (r_s ~ 1) and simple geometries, theory does indeed predict an asymmetric distribution with a significant even/odd effect. The width of the distribution is of order 0.3 Delta, and its dominant feature is a large peak for the odd case, reminiscent of the delta-function in the g->oo limit. We consider finite temperature effects next. Only after their inclusion is good agreement with the experimental results obtained. Even relatively low temperature causes large modifications in the peak spacing distribution: (a) its peak is dominated by the even distribution at kT ~ 0.3 Delta (at lower T a double peak appears); (b) it becomes more symmetric; (c) the even/odd effect is considerably weaker; (d) the delta-function is completely washed-out; and (e) fluctuation of the coupling to the leads becomes relevant. Experiments aimed at observing the T=0 peak spacing distribution should therefore be done at kT<0.1 Delta for typical values of the e-e interaction.Comment: 15 pages, 4 figure

    Interactions in Chaotic Nanoparticles: Fluctuations in Coulomb Blockade Peak Spacings

    Full text link
    We use random matrix models to investigate the ground state energy of electrons confined to a nanoparticle. Our expression for the energy includes the charging effect, the single-particle energies, and the residual screened interactions treated in Hartree-Fock. This model is applicable to chaotic quantum dots or nanoparticles--in these systems the single-particle statistics follows random matrix theory at energy scales less than the Thouless energy. We find the distribution of Coulomb blockade peak spacings first for a large dot in which the residual interactions can be taken constant: the spacing fluctuations are of order the mean level separation Delta. Corrections to this limit are studied using the small parameter 1/(kf L): both the residual interactions and the effect of the changing confinement on the single-particle levels produce fluctuations of order Delta/sqrt(kf L). The distributions we find are significantly more like the experimental results than the simple constant interaction model.Comment: 17 pages, 4 figures, submitted to Phys. Rev.

    Integrable model for interacting electrons in metallic grains

    Full text link
    We find an integrable generalization of the BCS model with non-uniform Coulomb and pairing interaction. The Hamiltonian is integrable by construction since it is a functional of commuting operators; these operators, which therefore are constants of motion of the model, contain the anisotropic Gaudin Hamiltonians. The exact solution is obtained diagonalizing them by means of Bethe Ansatz. Uniform pairing and Coulomb interaction are obtained as the ``isotropic limit'' of the Gaudin Hamiltonians. We discuss possible applications of this model to a single grain and to a system of few interacting grains.Comment: 4 pages, revtex. Revised version to be published in Phys. Rev. Let

    Kondo effect in real quantum dots

    Full text link
    Exchange interaction within a quantum dot strongly affects the transport through it in the Kondo regime. In a striking difference with the results of the conventional model, where this interaction is neglected, here the temperature and magnetic field dependence of the conductance may become non-monotonic: its initial increase follows by a drop when temperature and magnetic field are lowered

    Discrete charging of metallic grains: Statistics of addition spectra

    Full text link
    We analyze the statistics of electrostatic energies (and their differences) for a quantum dot system composed of a finite number KK of electron islands (metallic grains) with random capacitance-inductance matrix CC, for which the total charge is discrete, Q=NeQ=Ne (where ee is the charge of an electron and NN is an integer). The analysis is based on a generalized charging model, where the electrons are distributed among the grains such that the electrostatic energy E(N) is minimal. Its second difference (inverse compressibility) χN=E(N+1)−2E(N)+E(N−1)\chi_{N}=E(N+1)-2 E(N)+E(N-1) represents the spacing between adjacent Coulomb blockade peaks appearing when the conductance of the quantum dot is plotted against gate voltage. The statistics of this quantity has been the focus of experimental and theoretical investigations during the last two decades. We provide an algorithm for calculating the distribution function corresponding to χN\chi_{N} and show that this function is piecewise polynomial.Comment: 21 pages, no figures, mathematical nomenclature (except for Abstract and Introduction
    • …
    corecore