36 research outputs found

    Functional Analysis of Hif1 Histone Chaperone in Saccharomyces cerevisiae

    Get PDF
    The Hif1 protein in the yeast Saccharomyces cerevisie is an evolutionarily conserved H3/H4-specific chaperone and a subunit of the nuclear Hat1 complex that catalyzes the acetylation of newly synthesized histone H4. Hif1, as well as its human homolog NASP, has been implicated in an array of chromatin-related processes including histone H3/H4 transport, chromatin assembly and DNA repair. In this study, we elucidate the functional aspects of Hif1. Initially we establish the wide distribution of Hif1 homologs with an evolutionarily conserved pattern of four tetratricopeptide repeats (TPR) motifs throughout the major fungal lineages and beyond. Subsequently, through targeted mutational analysis, we demonstrate that the acidic region that interrupts the TPR2 is essential for Hif1 physical interactions with the Hat1/Hat2-complex, Asf1, and with histones H3/H4. Furthermore, we provide evidence for the involvement of Hif1 in regulation of histone metabolism by showing that cells lacking HIF1 are both sensitive to histone H3 over expression, as well as synthetic lethal with a deletion of histone mRNA regulator LSM1. We also show that a basic patch present at the extreme C-terminus of Hif1 is essential for its proper nuclear localization. Finally, we describe a physical interaction with a transcriptional regulatory protein Spt2, possibly linking Hif1 and the Hat1 complex to transcription-associated chromatin reassembly. Taken together, our results provide novel mechanistic insights into Hif1 functions and establish it as an important protein in chromatin-associated processes

    A quantitative literature-curated gold standard for kinase-substrate pairs

    Get PDF
    We describe the Yeast Kinase Interaction Database (KID, http://www.moseslab.csb.utoronto.ca/KID/), which contains high- and low-throughput data relevant to phosphorylation events. KID includes 6,225 low-throughput and 21,990 high-throughput interactions, from greater than 35,000 experiments. By quantitatively integrating these data, we identified 517 high-confidence kinase-substrate pairs that we consider a gold standard. We show that this gold standard can be used to assess published high-throughput datasets, suggesting that it will enable similar rigorous assessments in the future

    A CDK-regulated chromatin segregase promoting chromosome replication

    Get PDF
    The replication of chromosomes during S phase is critical for cellular and organismal function. Replicative stress can result in genome instability, which is a major driver of cancer. Yet how chromatin is made accessible during eukaryotic DNA synthesis is poorly understood. Here, we report the characterization of a chromatin remodeling enzyme-Yta7-entirely distinct from classical SNF2-ATPase family remodelers. Yta7 is a AAA+ -ATPase that assembles into \~1 MDa hexameric complexes capable of segregating histones from DNA. The Yta7 chromatin segregase promotes chromosome replication both in vivo and in vitro. Biochemical reconstitution experiments using purified proteins revealed that the enzymatic activity of Yta7 is regulated by S phase-forms of Cyclin-Dependent Kinase (S-CDK). S-CDK phosphorylation stimulates ATP hydrolysis by Yta7, promoting nucleosome disassembly and chromatin replication. Our results present a mechanism for how cells orchestrate chromatin dynamics in co-ordination with the cell cycle machinery to promote genome duplication during S phase

    Yta7, a chromatin segregase regulated by the cell cycle machinery

    Get PDF
    We have recently revealed the existence of a cell cycle-regulated chromatin segregase, Yta7 (Yeast Tat-binding Analog 7), involved in chromosome replication. Phosphorylation of Yta7 by S-CDK (S-phase Cyclin-Dependent Kinase) regulates its function. These findings link the cell cycle to chromatin biology and suggest how chromatin-modifying enzymes become S phase-specific

    Supplementary Material for Dannah et al., 2018

    No full text
    Supplementary tables 1lists yeast strains used in the study. Supplemental Table 2 lists primers used in the study. Supplemental Table 3 lists accession numbers for sequences used in phylogenetic aspects of the study. Supplemental Figure 1 compares fungal and human sNASP homologs. Supplemental figure 2 shows an alignment of putative NLSs in fungal Hif1. Supplemental Figure 3 is a schematic representation of Hif1 deletion mutants. Supplemental Figure 4 shows indirect IF analysis of Hif1 deletion mutants. Supplemental Figure 5 shows sensitivity of selected strains of yeast to genotoxins. Supplemental Figure 6 shows a network representation of protein-protein and genetic interaction data for Hif1 and selected partners

    Establishment and function of chromatin organization at replication origins

    No full text
    The origin recognition complex (ORC) is essential for initiation of eukaryotic chromosome replication as it loads the replicative helicase—the minichromosome maintenance (MCM) complex—at replication origins1. Replication origins display a stereotypic nucleosome organization with nucleosome depletion at ORC-binding sites and flanking arrays of regularly spaced nucleosomes2,3,4. However, how this nucleosome organization is established and whether this organization is required for replication remain unknown. Here, using genome-scale biochemical reconstitution with approximately 300 replication origins, we screened 17 purified chromatin factors from budding yeast and found that the ORC established nucleosome depletion over replication origins and flanking nucleosome arrays by orchestrating the chromatin remodellers INO80, ISW1a, ISW2 and Chd1. The functional importance of the nucleosome-organizing activity of the ORC was demonstrated by orc1 mutations that maintained classical MCM-loader activity but abrogated the array-generation activity of ORC. These mutations impaired replication through chromatin in vitro and were lethal in vivo. Our results establish that ORC, in addition to its canonical role as the MCM loader, has a second crucial function as a master regulator of nucleosome organization at the replication origin, a crucial prerequisite for efficient chromosome replication

    Chromatin Fiber Invasion and Nucleosome Displacement by the Rap1 Transcription Factor

    No full text
    Pioneer transcription factors (pTFs) bind to target sites within compact chromatin, initiating chromatin remodeling and controlling the recruitment of downstream factors. The mechanisms by which pTFs overcome the chromatin barrier are not well understood. Here, we reveal, using single-molecule fluorescence, how the yeast transcription factor Rap1 invades and remodels chromatin. Using a reconstituted chromatin system replicating yeast promoter architecture, we demonstrate that Rap1 can bind nucleosomal DNA within a chromatin fiber but with shortened dwell times compared to naked DNA. Moreover, we show that Rap1 binding opens chromatin fiber structure by inhibiting inter-nucleosome contacts. Finally, we reveal that Rap1 collaborates with the chromatin remodeler RSC to displace promoter nucleosomes, paving the way for long-lived bound states on newly exposed DNA. Together, our results provide a mechanistic view of how Rap1 gains access and opens chromatin, thereby establishing an active promoter architecture and controlling gene expression
    corecore