3,246 research outputs found

    Continuous measurement of heart rate variability following carbon dioxide pneumoperitoneum during nitrous oxide/sevoflurane anaesthesia

    Get PDF
    Background: Previous studies of autonomic nervous system activity through analysis of heart rate variability (HRV) have demonstrated increased sympathetic activity during positive-pressure pneumoperitoneum. We employed an online, continuous method for rapid HRV analysis (MemCalc™, Tarawa, Suwa Trust, Tokyo, Japan) to demonstrate rapid changes in autonomic nervous system during pneumoperitoneum for laparoscopy. Method: The powers of low-frequency (LF) (0.04-0.15 Hz) and high-frequency (HF) (0.15-0.4 Hz) components of HRV in 20 healthy adult patients were monitored under sevoflurane anaesthesia for 10 minutes after the initiation of carbon dioxide pneumoperitoneum at 10 mmHg. Results: Heart rate increased promptly, but transiently, just after peritoneal insufflation. At that time, the ratio between the LF and HF components increased on HRV. Similar, but small, changes occurred following head-up positioning. Conclusion: By monitoring HRV continuously, we have demonstrated that the change in autonomic nervous system balance induced by peritoneal insufflation was prompt and transient. The change in autonomic nervous system activity could have been due to increased sympathetic activity, reduced vagal activity, or both.Keywords: heart rate variability; positive pressure pneumoperitoneum; continuous monitorin

    Development of Large area Gamma-ray Camera with GSO(Ce) Scintillator Arrays and PSPMTs

    Get PDF
    We have developed a position-sensitive scintillation camera with a large area absorber for use as an advanced Compton gamma-ray camera. At first we tested GSO(Ce) crystals. We compared light output from the GSO(Ce) crystals under various conditions: the method of surface polishing, the concentration of Ce, and co-doping Zr. As a result, we chose the GSO(Ce) crystals doped with only 0.5 mol% Ce, and its surface polished by chemical etching as the scintillator of our camera. We also made a 16×\times16 cm2^2 scintillation camera which consisted of 9 position-sensitive PMTs (PSPMTs Hamamatsu flat-panel H8500), the each of which had 8×\times8 anodes with a pitch of 6 mm and coupled to 8×\times8 arrays of pixelated 6×6×\times6\times13 mm3^3 GSO(Ce) scintillators. For the readout system of the 576 anodes of the PMTs, we used chained resistors to reduce the number of readout channels down to 48 to reduce power consumption. The camera has a position resolution of less than 6mm and a typical energy resolution of 10.5% (FWHM) at 662 keV at each pixel in a large area of 16×\times16 cm2^2. %to choose the best scintillator for our project. Furthermore we constructed a 16×\times16 array of 3×3×\times3\times13 mm3^3 pixelated GSO(Ce) scintillators, and glued it to a PMT H8500. This camera had the position resolution of less than 3mm, over an area of 5×\times5 cm2^2, except for some of the edge pixels; the energy resolution was typically 13% (FWHM) at 662 keV.Comment: Proceedings of PSD7 appear in NIM

    Study on moisture loss and drying shrinkage behaviour of mortar with mineral admixture based on pore structure

    Get PDF
    The moisture loss and drying shrinkage behavior of mortar with mineral admixture such as blast-furnace slag and fly ash are investigated focusing on the microstructure affected by curing temperature. The curing at high temperature greatly accelerates the hydration reaction of the mortar with mineral admixture to make pore structure denser and leads to smaller moisture loss than that of mortar without mineral admixture. The moisture loss is almost proportional to the accumulated volume of pores whose radii are larger than the radius at the liquid/vapour interface based on the Kelvin equation and BET theory of absorbed water. When the shrinkage is assumed to be induced only by the capillary tension, the estimated shrinkage shows different tendency from experimental one. It suggests that the other shrinkage driving forces that have been believed to be dominant under severe drying conditions should be taken into account even under normal drying condition (RH=60% at 20 degree)

    HAGE (DDX43) is a biomarker for poor prognosis and a predictor of chemotherapy response in breast cancer

    Get PDF
    Background: HAGE protein is a known immunogenic cancer-specific antigen. Methods: The biological, prognostic and predictive values of HAGE expression was studied using immunohistochemistry in three cohorts of patients with BC (n=2147): early primary (EP-BC; n=1676); primary oestrogen receptor-negative (PER-BC; n=275) treated with adjuvant anthracycline-combination therapies (Adjuvant-ACT); and primary locally advanced disease (PLA-BC) who received neo-adjuvant anthracycline-combination therapies (Neo-adjuvant-ACT; n=196). The relationship between HAGE expression and the tumour-infiltrating lymphocytes (TILs) in matched prechemotherapy and postchemotherapy samples were investigated. Results: Eight percent of patients with EP-BC exhibited high HAGE expression (HAGEþ) and was associated with aggressive clinico-pathological features (Ps<0.01). Furthermore, HAGEþexpression was associated with poor prognosis in both univariate and multivariate analysis (Ps<0.001). Patients with HAGE+ did not benefit from hormonal therapy in high-risk ER-positive disease. HAGE+ and TILs were found to be independent predictors for pathological complete response to neoadjuvant-ACT; P<0.001. A statistically significant loss of HAGE expression following neoadjuvant-ACT was found (P=0.000001), and progression-free survival was worse in those patients who had HAGE+ residual disease (P=0.0003). Conclusions: This is the first report to show HAGE to be a potential prognostic marker and a predictor of response to ACT in patients with BC

    Correct quantum chemistry in a minimal basis from effective Hamiltonians

    Get PDF
    We describe how to create ab-initio effective Hamiltonians that qualitatively describe correct chemistry even when used with a minimal basis. The Hamiltonians are obtained by folding correlation down from a large parent basis into a small, or minimal, target basis, using the machinery of canonical transformations. We demonstrate the quality of these effective Hamiltonians to correctly capture a wide range of excited states in water, nitrogen, and ethylene, and to describe ground and excited state bond-breaking in nitrogen and the chromium dimer, all in small or minimal basis sets

    GEANT4 : a simulation toolkit

    Get PDF
    Abstract Geant4 is a toolkit for simulating the passage of particles through matter. It includes a complete range of functionality including tracking, geometry, physics models and hits. The physics processes offered cover a comprehensive range, including electromagnetic, hadronic and optical processes, a large set of long-lived particles, materials and elements, over a wide energy range starting, in some cases, from 250 eV and extending in others to the TeV energy range. It has been designed and constructed to expose the physics models utilised, to handle complex geometries, and to enable its easy adaptation for optimal use in different sets of applications. The toolkit is the result of a worldwide collaboration of physicists and software engineers. It has been created exploiting software engineering and object-oriented technology and implemented in the C++ programming language. It has been used in applications in particle physics, nuclear physics, accelerator design, space engineering and medical physics. PACS: 07.05.Tp; 13; 2

    Installation and Test of the ATLAS Muon Endcap Trigger Chamber Electronics

    Get PDF
    For the detector commissioning planned in 2007, a sector assembly of the ATLAS muon endcap trigger chambers is being progressed in CERN. Final technical test of the electronics mounted on a sector must be made at this stage. For systematic test of the electronics (sector test), we have developed a DAQ system on top of the ATLAS online software framework. The system is not dedicated only for this test, but can be used also for the front-end detector part of the overall ATLAS DAQ system. In the presentation, the procedure, meaning and results of the sector test are discussed after brief introduction of the TGC electronics and the sector structure as a construction unit. We introduce plans of further detailed and elaborated tests for the whole system using cosmic ray and single halo muons when all the TGC sub-detector part is completed as concluding remark
    corecore