22,615 research outputs found

    Stem-root flow effect on soilā€“atmosphere interactions and uncertainty assessments

    Get PDF
    Abstract. Soil water can rapidly enter deeper layers via vertical redistribution of soil water through the stemā€“root flow mechanism. This study develops the stemā€“root flow parameterization scheme and coupled this scheme with the Simplified Simple Biosphere model (SSiB) to analyze its effects on landā€“atmospheric interactions. The SSiB model was tested in a single column mode using the Lien Hua Chih (LHC) measurements conducted in Taiwan and HAPEX-Mobilhy (HAPEX) measurements in France. The results show that stemā€“root flow generally caused a decrease in the moisture content at the top soil layer and moistened the deeper soil layers. Such soil moisture redistribution results in significant changes in heat flux exchange between land and atmosphere. In the humid environment at LHC, the stemā€“root flow effect on transpiration was minimal, and the main influence on energy flux was through reduced soil evaporation that led to higher soil temperature and greater sensible heat flux. In the Mediterranean environment of HAPEX, the stemā€“root flow significantly affected plant transpiration and soil evaporation, as well as associated changes in canopy and soil temperatures. However, the effect on transpiration could either be positive or negative depending on the relative changes in the moisture content of the top soil vs. deeper soil layers due to stemā€“root flow and soil moisture diffusion processes

    A morphological study of waves in the thermosphere using DE-2 observations

    Get PDF
    Theoretical model and data analysis of DE-2 observations for determining the correlation between the neutral wave activity and plasma irregularities have been presented. The relationships between the observed structure of the sources, precipitation and joule heating, and the fluctuations in neutral and plasma parameters are obtained by analyzing two measurements of neutral atmospheric wave activity and plasma irregularities by DE-2 during perigee passes at an altitude on the order of 300 to 350 km over the polar cap. A theoretical model based on thermal nonlinearity (joule heating) to give mode-mode coupling is developed to explore the role of neutral disturbance (winds and gravity waves) on the generation of plasma irregularities

    Detection of hidden mineral deposits by airborne spectral analysis of forest canopies

    Get PDF
    Data from field surveys and biogeochemical tests conducted in Maine, Montana, and Washington strongly correlate with results obtained using high resolution airborne spectroradiometer which detects an anomalous spectral waveform that appears definitely associated with sulfide mineralization. The spectral region most affected by mineral stress is between 550 nm and 750 nm. Spectral variations observed in the field occur on the wings of the red chlorophyll band centered at about 690 nm. The metal-stress-induced variations on the absorption band wing are most successfully resolved in the high spectral resolution field data using a waveform analysis technique. The development of chlorophyll pigments was retarded in greenhouse plants doped with copper and zinc in the laboratory. The lowered chlorophyll production resulted in changes on the wings of the chlorophyll bands of reflectance spectra of the plants. The airborne spectroradiometer system and waveform analysis remains the most sensitive technique for biogeochemical surveys

    On the use of colour reflectivity plots to monitor the structure of the troposphere and stratosphere

    Get PDF
    The radar reflectivity, defined as the range squared corrected power of VHF radar echoes, can be used to monitor and study the temporal development of inversion layer, frontal boundaries and convective turbulence. From typical featurs of upward or downward motion of reflectivity structures, the advection/convection of cold and warm air can be predicted. High resolution color plots appear to be useful to trace and to study the life history of these structures, particularly their persistency, descent and ascent. These displays allow an immediate determination of the tropopause height as well as the determination of the tropopause structure. The life history of warm fronts, cold fronts, and occlusions can be traced, and these reflectivity plots allow detection of even very weak events which cannot be seen in the traditional meteorological data sets. The life history of convective turbulence, particular evolving from the planetary boundary layer, can be tracked quite easily. Its development into strong convection reaching the middle troposphere can be followed and predicted

    Spin gap behavior in Cu2_2Sc2_2Ge4_4O13_{13} by 45^{45}Sc nuclear magnetic resonance

    Full text link
    We report the results of a 45^{45}Sc nuclear magnetic resonance (NMR) study on the quasi-one-dimensional compound Cu2_2Sc2_2Ge4_4O13_{13} at temperatures between 4 and 300 K. This material has been a subject of current interest due to indications of spin gap behavior. The temperature-dependent NMR shift exhibits a character of low-dimensional magnetism with a negative broad maximum at TmaxT_{max} ā‰ƒ\simeq 170 K. Below % T_{max}, the NMR shifts and spin lattice relaxation rates clearly indicate activated responses, confirming the existence of a spin gap in Cu2_2Sc2_2Ge% 4_4O13_{13}. The experimental NMR data can be well fitted to the spin dimer model, yielding a spin gap value of about 275 K which is close to the 25 meV peak found in the inelastic neutron scattering measurement. A detailed analysis further points out that the nearly isolated dimer picture is proper for the understanding of spin gap nature in Cu2_2Sc2_2Ge4_4O13_{13}.Comment: 4 pages, 6 figures, submitted to Phys. Rev.

    The first operation and results of the Chung-Li VHF radar

    Get PDF
    The Chung-Li Very High Frequency (VHF) radar is used in the dual-mode operations, applying Doppler beam-swinging as well as the spaced-antenna-drift method. The design of the VHF radar is examined. Results of performance tests are discussed

    A finite element method for fully nonlinear elliptic problems

    Get PDF
    We present a continuous finite element method for some examples of fully nonlinear elliptic equation. A key tool is the discretisation proposed in Lakkis & Pryer (2011, SISC) allowing us to work directly on the strong form of a linear PDE. An added benefit to making use of this discretisation method is that a recovered (finite element) Hessian is a biproduct of the solution process. We build on the linear basis and ultimately construct two different methodologies for the solution of second order fully nonlinear PDEs. Benchmark numerical results illustrate the convergence properties of the scheme for some test problems including the Monge-Amp\`ere equation and Pucci's equation.Comment: 22 pages, 31 figure
    • ā€¦
    corecore