324 research outputs found

    Emphysematous Prostatitis Caused by Klebsiella pneumoniae

    Get PDF
    Emphysematous prostatitis is a rare condition that is characterized by gas and abscess accumulation in the prostate. We report a 60-year-old man with emphysematous prostatitis caused by Klebsiella pneumoniae. He had a history of recently diagnosed diabetes mellitus and a 16-year history of alcoholic liver cirrhosis. He was admitted due to fever, dysuria and difficult urination. Physical examination revealed lower abdominal tenderness and prostatic fluctuance on digital examination. Leukocytosis, pyuria and elevated C-reactive protein were found. Abdominal radiography disclosed a collection of abnormal air pockets in the lower pelvic cavity and computed tomography scans corroborated the existence of extensive air collection in the prostate. Under the impression of emphysematous prostatitis, the patient was successfully treated with transurethral incision of the prostate and antibiotics for 6 weeks; there were no urinary sequelae during 6 months of follow-up. [J Formos Med Assoc 2007;106(1):74-77

    Invited; Developing low-temperature defect passivation technology with supercritical fluid technology

    Get PDF
    Current technology nodes in the process of semiconductor manufacturing have faced many bottlenecks. Therefore, a disruptive-innovative semiconductor processing technology is crucially needed to make a significant breakthrough. Our research team has developed a low temperature (RT~250°C), defect passivation technology based on the supercritical fluid (SCF) technology applied in the nano-scale device processing to overcome the key issues. The SCF technology was originally applied in the field of the extraction and the cleaning of biotechnologies. However, our research team firstly applies this technology in the optoelectronic device. Compared to current high pressure annealing (HPA) and rapid thermal annealing (RTA) methods, the SCF-based defect passivation technology features low temperature, and can be applied for various materials and devices including photoelectric device, advanced nano-device, memory device, and wide bandgap device. Currently, the prototype of the 12” supercritical fluid processing equipment has already been built, and related recipes including nitridation, oxidation, hydrogenation, and sulfurization are also implemented for various devices and applications. In this talk, we will introduce related SCF defect passivation technology and future developments for the SCF applications

    Monkey hybrid stem cells develop cellular features of Huntington's disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pluripotent stem cells that are capable of differentiating into different cell types and develop robust hallmark cellular features are useful tools for clarifying the impact of developmental events on neurodegenerative diseases such as Huntington's disease. Additionally, a Huntington's cell model that develops robust pathological features of Huntington's disease would be valuable for drug discovery research.</p> <p>Results</p> <p>To test this hypothesis, a pluripotent Huntington's disease monkey hybrid cell line (TrES1) was established from a tetraploid Huntington's disease monkey blastocyst generated by the fusion of transgenic Huntington's monkey skin fibroblast and a wild-type non-transgenic monkey oocyte. The TrES1 developed key Huntington's disease cellular pathological features that paralleled neural development. It expressed mutant huntingtin and stem cell markers, was capable of differentiating to neural cells, and developed teratoma in severely compromised immune deficient (SCID) mice. Interestingly, the expression of mutant htt, the accumulation of oligomeric mutant htt and the formation of intranuclear inclusions paralleled neural development <it>in vitro </it>, and even mutant htt was ubiquitously expressed. This suggests the development of Huntington's disease cellular features is influenced by neural developmental events.</p> <p>Conclusions</p> <p>Huntington's disease cellular features is influenced by neural developmental events. These results are the first to demonstrate that a pluripotent stem cell line is able to mimic Huntington's disease progression that parallels neural development, which could be a useful cell model for investigating the developmental impact on Huntington's disease pathogenesis.</p

    Comparison of single-incision mini-slings (Ajust) and standard transobturator midurethral slings (Align) in the management of female stress urinary incontinence: A 1-year follow-up

    Get PDF
    AbstractObjectiveTo investigate the effectiveness and safety of a new single-incision mini-sling (SIMS)—Ajust—compared with the standard transobturator midurethral sling (SMUS)—Align—for the treatment of female stress urinary incontinence (SUI).Materials and MethodsA retrospective cohort study was conducted between January 1, 2010 and August 31, 2012. Women with SUI who underwent either SMUS-Align or SIMS-Ajust were recruited. The primary outcomes included operation time, estimated operative blood loss, postoperative pain, and complications. The secondary outcomes included subjective and objective success, defined as an International Consultation on Incontinence Questionnaire (ICIQ) score of 0 or improvement as felt by the patient and a long-term complication, such as dyspareunia and mesh erosion after 6 months and 12 months of follow-up.ResultsA total of 136 patients were enrolled, including 76 receiving SMUS-Align and 60 receiving SIMS-Ajust. Baseline characteristics of the patients in both groups were similar, without a statistically significant difference. Primary outcomes between both groups were similar, except that women treated with SIMS-Ajust had statistically significantly shorter operation time (p = 0.003), less intent to treat (p < 0.05), and earlier postoperative discharge (p = 0.001) than women treated with SMUS-Align. Secondary outcomes were similar without a significant difference between the two groups (93% vs. 88% success rate in each group).ConclusionOur results showed that SIMS-Ajust was not inferior to SMUS-Align with respect to success rate, and might have a slight advantage in early discharge. A long-term follow-up or prospective study is needed to confirm the above findings

    Impact of Clinical Characteristics of Individual Metabolic Syndrome on the Severity of Insulin Resistance in Chinese Adults

    Get PDF
    The impact the metabolic syndrome (MetS) components on the severity of insulin resistance (IR) has not been reported. We enrolled 564 subjects with MetS and they were divided into quartiles according to the level of each component; and an insulin suppression test was performed to measure IR. In males, steady state plasma glucose (SSPG) levels in the highest quartiles, corresponding to body mass index (BMI) and fasting plasma glucose (FPG), were higher than the other three quartiles and the highest quartiles, corresponding to the diastolic blood pressure and triglycerides, were higher than in the lowest two quartiles. In females, SSPG levels in the highest quartiles, corresponding to the BMI and triglycerides, were higher than in all other quartiles. No significant differences existed between genders, other than the mean SSPG levels in males were greater in the highest quartile corresponding to BMI than that in the highest quartile corresponding to HDL-cholesterol levels. The factor analysis identified two underlying factors (IR and blood pressure factors) among the MetS variables. The clustering of the SSPG, BMI, triglyceride and HDL-cholesterol was noted. Our data suggest that adiposity, higher FPG and triglyceride levels have stronger correlation with IR and subjects with the highest BMI have the highest IR

    Cytolethal Distending Toxin Enhances Radiosensitivity in Prostate Cancer Cells by Regulating Autophagy

    Get PDF
    Cytolethal distending toxin (CDT) produced by Campylobacter jejuni contains three subunits: CdtA, CdtB, and CdtC. Among these three toxin subunits, CdtB is the toxic moiety of CDT with DNase I activity, resulting in DNA double-strand breaks (DSB) and, consequently, cell cycle arrest at the G2/M stage and apoptosis. Radiation therapy is an effective modality for the treatment of localized prostate cancer (PCa). However, patients often develop radioresistance. Owing to its particular biochemical properties, we previously employed CdtB as a therapeutic agent for sensitizing radioresistant PCa cells to ionizing radiation (IR). In this study, we further demonstrated that CDT suppresses the IR-induced autophagy pathway in PCa cells by attenuating c-Myc expression and therefore sensitizes PCa cells to radiation. We further showed that CDT prevents the formation of autophagosomes via decreased high-mobility group box 1 (HMGB1) expression and the inhibition of acidic vesicular organelle (AVO) formation, which are associated with enhanced radiosensitivity in PCa cells. The results of this study reveal the detailed mechanism of CDT for the treatment of radioresistant PCa

    Identification of Prognostic Genes for Recurrent Risk Prediction in Triple Negative Breast Cancer Patients in Taiwan

    Get PDF
    Discrepancies in the prognosis of triple negative breast cancer exist between Caucasian and Asian populations. Yet, the gene signature of triple negative breast cancer specifically for Asians has not become available. Therefore, the purpose of this study is to construct a prediction model for recurrence of triple negative breast cancer in Taiwanese patients. Whole genome expression profiling of breast cancers from 185 patients in Taiwan from 1995 to 2008 was performed, and the results were compared to the previously published literature to detect differences between Asian and Western patients. Pathway analysis and Cox proportional hazard models were applied to construct a prediction model for the recurrence of triple negative breast cancer. Hierarchical cluster analysis showed that triple negative breast cancers from different races were in separate sub-clusters but grouped in a bigger cluster. Two pathways, cAMP-mediated signaling and ephrin receptor signaling, were significantly associated with the recurrence of triple negative breast cancer. After using stepwise model selection from the combination of the initial filtered genes, we developed a prediction model based on the genes SLC22A23, PRKAG3, DPEP3, MORC2, GRB7, and FAM43A. The model had 91.7% accuracy, 81.8% sensitivity, and 94.6% specificity under leave-one-out support vector regression. In this study, we identified pathways related to triple negative breast cancer and developed a model to predict its recurrence. These results could be used for assisting with clinical prognosis and warrant further investigation into the possibility of targeted therapy of triple negative breast cancer in Taiwanese patients
    • …
    corecore