4,465 research outputs found
Resonances in one-dimensional Disordered Chain
We study the average density of resonances, is
defined in the complex energy plane and the distance from the real axes
determines the resonance width. We concentrate on strong disorder and derive
the asymptotic behavior of in the limit of small .Comment: latex, 1 eps figure, 9 pages; v2 - final version, published in the
JPhysA Special Issue Dedicated to the Physics of Non-Hermitian Operator
Ionic profiles close to dielectric discontinuities: Specific ion-surface interactions
We study, by incorporating short-range ion-surface interactions, ionic
profiles of electrolyte solutions close to a non-charged interface between two
dielectric media. In order to account for important correlation effects close
to the interface, the ionic profiles are calculated beyond mean-field theory,
using the loop expansion of the free energy. We show how it is possible to
overcome the well-known deficiency of the regular loop expansion close to the
dielectric jump, and treat the non-linear boundary conditions within the
framework of field theory. The ionic profiles are obtained analytically to
one-loop order in the free energy, and their dependence on different
ion-surface interactions is investigated. The Gibbs adsorption isotherm, as
well as the ionic profiles are used to calculate the surface tension, in
agreement with the reverse Hofmeister series. Consequently, from the
experimentally-measured surface tension, one can extract a single adhesivity
parameter, which can be used within our model to quantitatively predict hard to
measure ionic profiles.Comment: 14 pages, 6 figure
Information Length and Localization in One Dimension
The scaling properties of the wave functions in finite samples of the one
dimensional Anderson model are analyzed. The states have been characterized
using a new form of the information or entropic length, and compared with
analytical results obtained by assuming an exponential envelope function. A
perfect agreement is obtained already for systems of -- sites over
a very wide range of disorder parameter . Implications for
higher dimensions are also presented.Comment: 11 pages (+3 Figures upon request), Plain TE
The Local Bubble as a cosmic-ray isotropizer
Abstract. The arrival directions of energetic positrons and electrons convey fundamental information on their origin. PAMELA, and more recently AMS, have measured an anomalous population of energetic positrons, which cannot be explained in standard cosmic ray propagation models. Two possible sources have been extensively discussed: astrophysical point sources, such as local pulsars, and dark matter. In the first case an anisotropy in the flux of energetic particles is expected. Reliable predictions of the level of anisotropy need to account for the Sun's peculiar environment: the Sun resides in the so-called Local Bubble, an underdense region, embedded in a dense wall of molecular clouds. This structure is expected to act as an efficient cosmic-ray isotropizer. Using realistic assumptions on the impact of the Local Bubble on cosmic-ray diffusion, we demonstrate that the Local Bubble can indeed dilute the directional information of energetic positrons and electrons
Gold(I) Catalysts with Bifunctional P, N Ligands
A series of phosphanes with imidazolyl substituents were prepared as hemilabile PN ligands. The corresponding gold(I) complexes were tested as bifunctional catalysts in the Markovnikov hydration of 1-octyne, as well as in the synthesis of propargylamines by the three component coupling reaction of piperidine, benzaldehyde, and phenylacetylene. While the activity in the hydration of 1-octyne was low, the complexes are potent catalysts for the three component coupling reaction. In homogeneous solution the conversions to the respective propargylamine were considerably higher than under aqueous biphasic conditions. The connectivity of the imidazolyl substituents to the phosphorus atom, their substitution pattern, as well as the number of heteroaromatic substituents have pronounced effects on the catalytic activity of the corresponding gold(I) complexes. Furthermore, formation of polymetallic species with Au(2), Au(3), and Au(4) units has been observed and the solid-state structures of the compounds (5)(2)Au(3)Cl(2)]Cl and (3c)(2)Au(4)Cl(2)]Cl(2) (3c = tris(2-isopropylimidazol-4(5)-yl phosphane, 5 = 2-tert-butylimidazol-4(5)-yldiphenyl phosphane) were determined. The gold(I) complexes of imidazol-2-yl phosphane ligands proved to be a novel source for bis(NHC)gold(I) complexes (NHC = N-heterocyclic carbene)
Finite-size scaling from self-consistent theory of localization
Accepting validity of self-consistent theory of localization by Vollhardt and
Woelfle, we derive the finite-size scaling procedure used for studies of the
critical behavior in d-dimensional case and based on the use of auxiliary
quasi-1D systems. The obtained scaling functions for d=2 and d=3 are in good
agreement with numerical results: it signifies the absence of essential
contradictions with the Vollhardt and Woelfle theory on the level of raw data.
The results \nu=1.3-1.6, usually obtained at d=3 for the critical exponent of
the correlation length, are explained by the fact that dependence L+L_0 with
L_0>0 (L is the transversal size of the system) is interpreted as L^{1/\nu}
with \nu>1. For dimensions d\ge 4, the modified scaling relations are derived;
it demonstrates incorrectness of the conventional treatment of data for d=4 and
d=5, but establishes the constructive procedure for such a treatment.
Consequences for other variants of finite-size scaling are discussed.Comment: Latex, 23 pages, figures included; additional Fig.8 is added with
high precision data by Kramer et a
Brain mechanisms associated with facial encoding of affective states
Affective states are typically accompanied by facial expressions, but these behavioral manifestations are highly variable. Even highly arousing and negative valent experiences, such as pain, show great instability in facial affect encoding. The present study investigated which neural mechanisms are associated with variations in facial affect encoding by focusing on facial encoding of sustained pain experiences. Facial expressions, pain ratings, and brain activity (BOLD-fMRI) during tonic heat pain were recorded in 27 healthy participants. We analyzed facial expressions by using the Facial Action Coding System (FACS) and examined brain activations during epochs of painful stimulation that were accompanied by facial expressions of pain. Epochs of facial expressions of pain were coupled with activity increase in motor areas (M1, premotor and SMA) as well as in areas involved in nociceptive processing, including primary and secondary somatosensory cortex, posterior and anterior insula, and the anterior part of the mid-cingulate cortex. In contrast, prefrontal structures (ventrolateral and medial prefrontal) were less activated during incidences of facial expressions, consistent with a role in down-regulating facial displays. These results indicate that incidences of facial encoding of pain reflect activity within nociceptive pathways interacting or possibly competing with prefrontal inhibitory systems that gate the level of expressiveness
Organizational Culture of Small Retail Firms
A case study approach was used to examine organizational culture dimensions of small apparel retail firms located in small towns within the trading area of a regional shopping center. A long interview schedule was developed to obtain information from owners and employees. Content analysis of the qualitative responses revealed that 12 culture dimensions identified in previous research could be applied to the small firms. In addition, a dimension not clearly identified in previous research emerged in relation to influence of employees' family relationships on organizational culture. Suggestions for further research and application of the findings to management consultation are provided
- …