60 research outputs found

    Soft X‐ray and ENA Imaging of the Earth’s Dayside Magnetosphere

    Get PDF
    The LEXI and SMILE missions will provide soft X‐ray images of the Earth's magnetosheath and cusps after their anticipated launch in 2023 and 2024, respectively. The IBEX mission showed the potential of an Energetic Neutral Atom (ENA) instrument to image dayside magnetosheath and cusps, albeit over the long hours required to raster an image with a single pixel imager. Thus, it is timely to discuss the two imaging techniques and relevant science topics. We simulate soft X‐ray and low‐ENA images that might be observed by a virtual spacecraft during two interesting solar wind scenarios: a southward turning of the interplanetary magnetic field and a sudden enhancement of the solar wind dynamic pressure. We employ the OpenGGCM global magnetohydrodynamics model and a simple exospheric neutral density model for these calculations. Both the magnetosheath and the cusps generate strong soft X‐rays and ENA signals that can be used to extract the locations and motions of the bow shock and magnetopause. Magnetopause erosion corresponds closely to the enhancement of dayside reconnection rate obtained from the OpenGGCM model, indicating that images can be used to understand global‐scale magnetopause reconnection. When dayside imagers are installed with high‐ENA inner‐magnetosphere and FUV/UV aurora imagers, we can trace the solar wind energy flow from the bow shock to the magnetosphere and then to the ionosphere in a self‐standing manner without relying upon other observatories. Soft X‐ray and/or ENA imagers can also unveil the dayside exosphere density structure and its response to space weather

    Galactic and Extragalactic Samples of Supernova Remnants: How They Are Identified and What They Tell Us

    Full text link
    Supernova remnants (SNRs) arise from the interaction between the ejecta of a supernova (SN) explosion and the surrounding circumstellar and interstellar medium. Some SNRs, mostly nearby SNRs, can be studied in great detail. However, to understand SNRs as a whole, large samples of SNRs must be assembled and studied. Here, we describe the radio, optical, and X-ray techniques which have been used to identify and characterize almost 300 Galactic SNRs and more than 1200 extragalactic SNRs. We then discuss which types of SNRs are being found and which are not. We examine the degree to which the luminosity functions, surface-brightness distributions and multi-wavelength comparisons of the samples can be interpreted to determine the class properties of SNRs and describe efforts to establish the type of SN explosion associated with a SNR. We conclude that in order to better understand the class properties of SNRs, it is more important to study (and obtain additional data on) the SNRs in galaxies with extant samples at multiple wavelength bands than it is to obtain samples of SNRs in other galaxiesComment: Final 2016 draft of a chapter in "Handbook of Supernovae" edited by Athem W. Alsabti and Paul Murdin. Final version available at https://doi.org/10.1007/978-3-319-20794-0_90-

    New coil concept for endoluminal MR imaging: Initial results in staging of gastric carcinoma in correlation with Histopathology

    Get PDF
    Our aim was to conduct a prospective study to evaluate staging accuracy of a new coil concept for endoluminal magnetic resonance imaging (MRI) on ex vivo gastric carcinomas. Twenty-eight consecutive patients referred to surgery with a clinically proven primary gastric malignancy were included. Surgical specimens were examined with a foldable and self-expanding loop coil (8-cm diameter) at 1.5 Tesla immediately after total gastrectomy. T1- and T2-weighted and opposed-phase sequences (axial, frontal sections; 3- to 4-mm slice thickness) were acquired. Investigators blinded to any patient information analyzed signal intensity of normal gastric wall, gastric tumor, and lymph nodes. Findings were compared with histopathological staging. On surgical specimens, 2–5 gastric wall layers could be visualized. All gastric tumors (26 carcinomas, two lymphomas) were identified on endoluminal MR data (100%). Overall accuracy for T staging was 75% (18/24); sensitivity to detect serosal involvement was 80% and specificity 89%. N staging correlated in 58% (14/24) with histopathology (N+ versus N−). The endoluminal coil concept is feasible and applicable for an ex vivo setting. Endoluminal MR data provided sufficient detail for gastric wall layer differentiation, and therefore, identification of T stages in gastric carcinoma is possible. Further investigations in in vivo settings should explore the potential of our coil concept for endoluminal MR imaging

    Preclinical Evaluation of Oncolytic Vaccinia Virus for Therapy of Canine Soft Tissue Sarcoma

    Get PDF
    Virotherapy using oncolytic vaccinia virus (VACV) strains is one promising new strategy for canine cancer therapy. In this study we describe the establishment of an in vivo model of canine soft tissue sarcoma (CSTS) using the new isolated cell line STSA-1 and the analysis of the virus-mediated oncolytic and immunological effects of two different Lister VACV LIVP1.1.1 and GLV-1h68 strains against CSTS. Cell culture data demonstrated that both tested VACV strains efficiently infected and destroyed cells of the canine soft tissue sarcoma line STSA-1. In addition, in our new canine sarcoma tumor xenograft mouse model, systemic administration of LIVP1.1.1 or GLV-1h68 viruses led to significant inhibition of tumor growth compared to control mice. Furthermore, LIVP1.1.1 mediated therapy resulted in almost complete tumor regression and resulted in long-term survival of sarcoma-bearing mice. The replication of the tested VACV strains in tumor tissues led to strong oncolytic effects accompanied by an intense intratumoral infiltration of host immune cells, mainly neutrophils. These findings suggest that the direct viral oncolysis of tumor cells and the virus-dependent activation of tumor-associated host immune cells could be crucial parts of anti-tumor mechanism in STSA-1 xenografts. In summary, the data showed that both tested vaccinia virus strains and especially LIVP1.1.1 have great potential for effective treatment of CSTS

    The role of ligand efficiency metrics in drug discovery

    Get PDF
    The judicious application of ligand or binding efficiencies, which quantify the molecular properties required to gain binding affinity for a drug target, is gaining traction in the selection and optimisation of fragments, hits, and leads. Retrospective analysis of recently marketed oral drugs shows that they frequently have highly optimised ligand efficiency values for their target. Optimising ligand efficiencies based on both molecular size and lipophilicity, when set in the context of the specific target, has the potential to ameliorate the molecular inflation that pervades current practice in medicinal chemistry, and to increase the developability of drug candidates

    Solar minimum exospheric neutral density near the subsolar magnetopause estimated from the XMM soft X‐ray observations on 12 November 2008

    Full text link
    The Earth's magnetosheath and cusps emit soft X-rays due to the charge exchange between highly charged solar wind ions and exospheric hydrogen atoms. The Lunar Environment Heliospheric X-ray Imager and Solar wind Magnetosphere Ionosphere Link Explorer missions are scheduled to image the Earth's dayside magnetosphere system in soft X-rays to investigate global-scale magnetopause reconnection modes under varying solar wind conditions. The exospheric neutral hydrogen density distribution, especially the value of this density at the subsolar magnetopause is of particular interest for understanding X-ray emissions near this boundary. This paper estimates the exospheric density during solar minimum using the X-ray Multimirror Mission (XMM) astrophysics observatory. We selected an event on 12 November 2008 from the XMM data archive, which detects soft X-rays of magnetosheath origin while solar wind and interplanetary magnetic field conditions are relatively constant. During the event the location of the magnetopause was measured in situ by the THEMIS mission, thus the location of the solar wind ions responsible for the magnetosheath emission is well constrained by observation. We estimated the exospheric density using the Open Geospace Global Circulation Model (OpenGGCM) and a spherically symmetric exosphere model. The ratio of the magnetosheath plasma flux between the OpenGGCM model and the THEMIS, was nearly 1, which means the magnetohydrodynamic model reasonably reproduces the magnetosheath plasma conditions. The OpenGGCM magnetosheath parameters were used to deconvolve soft X-rays of exospheric origin from the XMM signal. The lower-limit of the exospheric density of this solar minimum event is 36.8 ± 11.7 cm−3 at 10 RE subsolar location. </p

    Soft X‐ray and ENA Imaging of the Earth's Dayside Magnetosphere

    No full text
    The LEXI and SMILE missions will provide soft X‐ray images of the Earth's magnetosheath and cusps after their anticipated launch in 2023 and 2024, respectively. The IBEX mission showed the potential of an Energetic Neutral Atom (ENA) instrument to image dayside magnetosheath and cusps, albeit over the long hours required to raster an image with a single pixel imager. Thus, it is timely to discuss the two imaging techniques and relevant science topics. We simulate soft X‐ray and low‐ENA images that might be observed by a virtual spacecraft during two interesting solar wind scenarios: a southward turning of the interplanetary magnetic field and a sudden enhancement of the solar wind dynamic pressure. We employ the OpenGGCM global magnetohydrodynamics model and a simple exospheric neutral density model for these calculations. Both the magnetosheath and the cusps generate strong soft X‐rays and ENA signals that can be used to extract the locations and motions of the bow shock and magnetopause. Magnetopause erosion corresponds closely to the enhancement of dayside reconnection rate obtained from the OpenGGCM model, indicating that images can be used to understand global‐scale magnetopause reconnection. When dayside imagers are installed with high‐ENA inner‐magnetosphere and FUV/UV aurora imagers, we can trace the solar wind energy flow from the bow shock to the magnetosphere and then to the ionosphere in a self‐standing manner without relying upon other observatories. Soft X‐ray and/or ENA imagers can also unveil the dayside exosphere density structure and its response to space weather
    • 

    corecore