159 research outputs found

    Discovery of the Largest Orbweaving Spider Species: The Evolution of Gigantism in Nephila

    Get PDF
    More than 41,000 spider species are known with about 400-500 added each year, but for some well-known groups, such as the giant golden orbweavers, Nephila, the last valid described species dates from the 19(th) century. Nephila are renowned for being the largest web-spinning spiders, making the largest orb webs, and are model organisms for the study of extreme sexual size dimorphism (SSD) and sexual biology. Here, we report on the discovery of a new, giant Nephila species from Africa and Madagascar, and review size evolution and SSD in Nephilidae.We formally describe N. komaci sp. nov., the largest web spinning species known, and place the species in phylogenetic context to reconstruct the evolution of mean size (via squared change parsimony). We then test female and male mean size correlation using phylogenetically independent contrasts, and simulate nephilid body size evolution using Monte Carlo statistics.Nephila females increased in size almost monotonically to establish a mostly African clade of true giants. In contrast, Nephila male size is effectively decoupled and hovers around values roughly one fifth of female size. Although N. komaci females are the largest Nephila yet discovered, the males are also large and thus their SSD is not exceptional

    A GIS Model Predicting Potential Distributions of a Lineage: A Test Case on Hermit Spiders (Nephilidae: Nephilengys)

    Get PDF
    BACKGROUND: Although numerous studies model species distributions, these models are almost exclusively on single species, while studies of evolutionary lineages are preferred as they by definition study closely related species with shared history and ecology. Hermit spiders, genus Nephilengys, represent an ecologically important but relatively species-poor lineage with a globally allopatric distribution. Here, we model Nephilengys global habitat suitability based on known localities and four ecological parameters. METHODOLOGY/PRINCIPAL FINDINGS: We geo-referenced 751 localities for the four most studied Nephilengys species: N. cruentata (Africa, New World), N. livida (Madagascar), N. malabarensis (S-SE Asia), and N. papuana (Australasia). For each locality we overlaid four ecological parameters: elevation, annual mean temperature, annual mean precipitation, and land cover. We used linear backward regression within ArcGIS to select two best fit parameters per species model, and ModelBuilder to map areas of high, moderate and low habitat suitability for each species within its directional distribution. For Nephilengys cruentata suitable habitats are mid elevation tropics within Africa (natural range), a large part of Brazil and the Guianas (area of synanthropic spread), and even North Africa, Mediterranean, and Arabia. Nephilengys livida is confined to its known range with suitable habitats being mid-elevation natural and cultivated lands. Nephilengys malabarensis, however, ranges across the Equator throughout Asia where the model predicts many areas of high ecological suitability in the wet tropics. Its directional distribution suggests the species may potentially spread eastwards to New Guinea where the suitable areas of N. malabarensis largely surpass those of the native N. papuana, a species that prefers dry forests of Australian (sub)tropics. CONCLUSIONS: Our model is a customizable GIS tool intended to predict current and future potential distributions of globally distributed terrestrial lineages. Its predictive potential may be tested in foreseeing species distribution shifts due to habitat destruction and global climate change

    Phylogeography of a successful aerial disperser: the golden orb spider Nephila on Indian Ocean islands

    Get PDF
    Abstract Background The origin and diversification patterns of lineages across the Indian Ocean islands are varied due to the interplay of the complex geographic and geologic island histories, the varying dispersal abilities of biotas, and the proximity to major continental landmasses. Our aim was to reconstruct phylogeographic history of the giant orbweaving spider (Nephila) on western Indian Ocean islands (Madagascar, Mayotte, Réunion, Mauritius, Rodrigues), to test its origin and route of dispersal, and to examine the consequences of good dispersal abilities for colonization and diversification, in comparison with related spiders (Nephilengys) inhabiting the same islands, and with other organisms known for over water dispersal. We used mitochondrial (COI) and nuclear (ITS2) markers to examine phylogenetic and population genetic patterns in Nephila populations and species. We employed Bayesian and parsimony methods to reconstruct phylogenies and haplotype networks, respectively, and calculated genetic distances, fixation indices, and estimated clade ages under a relaxed clock model. Results Our results suggest an African origin of Madagascar Nephila inaurata populations via Cenozoic dispersal, and the colonization of the Mascarene islands from Madagascar. We find evidence of gene flow across Madagascar and Comoros. The Mascarene islands share a common 'ancestral' COI haplotype closely related to those found on Madagascar, but itself absent, or as yet unsampled, from Madagascar. Each island has one or more unique haplotypes related to the ancestral Mascarene haplotype. The Indian Ocean N. inaurata are genetically distinct from the African populations. Conclusions Nephila spiders colonized Madagascar from Africa about 2.5 (0.6-5.3) Ma. Our results are consistent with subsequent, recent and rapid, colonization of all three Mascarene islands. On each island, however, we detected unique haplotypes, consistent with a limited gene flow among the islands subsequent to colonization, a scenario that might be referred to as speciation in progress. However, due to relatively small sample sizes, we cannot rule out that we simply failed to collect Mascarene haplotypes on Madagascar, a scenario that might imply human mediated dispersal. Nonetheless, the former interpretation better fits the available data and results in a pattern similar to the related Nephilengys. Nephilengys, however, shows higher genetic divergences with diversification on more remote islands. That the better disperser of the two lineages, Nephila, has colonized more islands but failed to diversify, demonstrates how dispersal ability can shape both the patterns of colonization and formation of species across archipelagos.</p

    One-shot genitalia are not an evolutionary dead end - Regained male polygamy in a sperm limited spider species

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Monogynous mating systems with extremely low male mating rates have several independent evolutionary origins and are associated with drastic adaptations involving self-sacrifice, one-shot genitalia, genital damage, and termination of spermatogenesis immediately after maturation. The combination of such extreme traits likely restricts evolutionary potential perhaps up to the point of making low male mating rates irreversible and hence may constitute an evolutionary dead end. Here, we explore the case of a reversion to multiple mating from monogynous ancestry in golden orb-web spiders, <it>Nephila senegalensis</it>.</p> <p>Results</p> <p>Male multiple mating is regained by the loss of genital damage and sexual cannibalism but spermatogenesis is terminated with maturation, restricting males to a single loading of their secondary mating organs and a fixed supply of sperm. However, males re-use their mating organs and by experimentally mating males to many females, we show that the sperm supply is divided between copulations without reloading the pedipalps.</p> <p>Conclusion</p> <p>By portioning their precious sperm supply, males achieve an average mating rate of four females which effectively doubles the maximal mating rate of their ancestors. A heritage of one-shot genitalia does not completely restrict the potential to increase mating rates in <it>Nephila </it>although an upper limit is defined by the available sperm load. Future studies should now investigate how males use this potential in the field and identify selection pressures responsible for a reversal from monogynous to polygynous mating strategies.</p

    How Did the Spider Cross the River? Behavioral Adaptations for River-Bridging Webs in Caerostris darwini (Araneae: Araneidae)

    Get PDF
    Interspecific coevolution is well described, but we know significantly less about how multiple traits coevolve within a species, particularly between behavioral traits and biomechanical properties of animals' "extended phenotypes". In orb weaving spiders, coevolution of spider behavior with ecological and physical traits of their webs is expected. Darwin's bark spider (Caerostris darwini) bridges large water bodies, building the largest known orb webs utilizing the toughest known silk. Here, we examine C. darwini web building behaviors to establish how bridge lines are formed over water. We also test the prediction that this spider's unique web ecology and architecture coevolved with new web building behaviors.We observed C. darwini in its natural habitat and filmed web building. We observed 90 web building events, and compared web building behaviors to other species of orb web spiders.Caerostris darwini uses a unique set of behaviors, some unknown in other spiders, to construct its enormous webs. First, the spiders release unusually large amounts of bridging silk into the air, which is then carried downwind, across the water body, establishing bridge lines. Second, the spiders perform almost no web site exploration. Third, they construct the orb capture area below the initial bridge line. In contrast to all known orb-weavers, the web hub is therefore not part of the initial bridge line but is instead built de novo. Fourth, the orb contains two types of radial threads, with those in the upper half of the web doubled. These unique behaviors result in a giant, yet rather simplified web. Our results continue to build evidence for the coevolution of behavioral (web building), ecological (web microhabitat) and biomaterial (silk biomechanics) traits that combined allow C. darwini to occupy a unique niche among spiders

    Bioprospecting Finds the Toughest Biological Material: Extraordinary Silk from a Giant Riverine Orb Spider

    Get PDF
    Background Combining high strength and elasticity, spider silks are exceptionally tough, i.e., able to absorb massive kinetic energy before breaking. Spider silk is therefore a model polymer for development of high performance biomimetic fibers. There are over 41.000 described species of spiders, most spinning multiple types of silk. Thus we have available some 200.000+ unique silks that may cover an amazing breadth of material properties. To date, however, silks from only a few tens of species have been characterized, most chosen haphazardly as model organisms (Nephila) or simply from researchers' backyards. Are we limited to ‘blindly fishing’ in efforts to discover extraordinary silks? Or, could scientists use ecology to predict which species are likely to spin silks exhibiting exceptional performance properties? Methodology We examined the biomechanical properties of silk produced by the remarkable Malagasy ‘Darwin's bark spider’ (Caerostris darwini), which we predicted would produce exceptional silk based upon its amazing web. The spider constructs its giant orb web (up to 2.8 m2) suspended above streams, rivers, and lakes. It attaches the web to substrates on each riverbank by anchor threads as long as 25 meters. Dragline silk from both Caerostris webs and forcibly pulled silk, exhibits an extraordinary combination of high tensile strength and elasticity previously unknown for spider silk. The toughness of forcibly silked fibers averages 350 MJ/m3, with some samples reaching 520 MJ/m3. Thus, C. darwini silk is more than twice tougher than any previously described silk, and over 10 times better than Kevlar®. Caerostris capture spiral silk is similarly exceptionally tough. Conclusions Caerostris darwini produces the toughest known biomaterial. We hypothesize that this extraordinary toughness coevolved with the unusual ecology and web architecture of these spiders, decreasing the likelihood of bridgelines breaking and collapsing the web into the river. This hypothesis predicts that rapid change in material properties of silk co-occurred with ecological shifts within the genus, and can thus be tested by combining material science, behavioral observations, and phylogenetics. Our findings highlight the potential benefits of natural history–informed bioprospecting to discover silks, as well as other materials, with novel and exceptional properties to serve as models in biomimicry.Primary funding for this work came from the Slovenian Research Agency (grant Z1-9799-0618-07 to I. Agnarsson), the National Geographic Society (grant 8655-09 to the authors), and the National Science Foundation (grants DBI-0521261, DEB-0516038 and IOS-0745379 to T. Blackledge). Additional funding came from the European Community 6th Framework Programme (a Marie Curie International Reintegration Grant MIRG-CT-2005 036536 to M. Kuntner). The 2001 field work was supported by the Sallee Charitable Trust grant to I. Agnarsson and M. Kuntner and by a United States National Science Foundation grant (DEB-9712353) to G. Hormiga and J. A. Coddington. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewe

    Preclinical PET and MR Evaluation of 89Zr- and 68Ga-Labeled Nanodiamonds in Mice over Different Time Scales

    Get PDF
    Nanodiamonds (NDs) have high potential as a drug carrier and in combination with nitrogen vacancies (NV centers) for highly sensitive MR-imaging after hyperpolarization. However, little remains known about their physiological properties in vivo. PET imaging allows further evaluation due to its quantitative properties and high sensitivity. Thus, we aimed to create a preclinical platform for PET and MR evaluation of surface-modified NDs by radiolabeling with both short- and long-lived radiotracers. Serum albumin coated NDs, functionalized with PEG groups and the chelator deferoxamine, were labeled either with zirconium-89 or gallium-68. Their biodistribution was assessed in two different mouse strains. PET scans were performed at various time points up to 7 d after i.v. injection. Anatomical correlation was provided by additional MRI in a subset of animals. PET results were validated by ex vivo quantification of the excised organs using a gamma counter. Radiolabeled NDs accumulated rapidly in the liver and spleen with a slight increase over time, while rapid washout from the blood pool was observed. Significant differences between the investigated radionuclides were only observed for the spleen (1 h). In summary, we successfully created a preclinical PET and MR imaging platform for the evaluation of the biodistribution of NDs over different time scales

    Thermal conductivity measurement of liquids in a microfluidic device

    Get PDF
    A new microfluidic-based approach to measuring liquid thermal conductivity is developed to address the requirement in many practical applications for measurements using small (microlitre) sample size and integration into a compact device. The approach also gives the possibility of high-throughput testing. A resistance heater and temperature sensor are incorporated into a glass microfluidic chip to allow transmission and detection of a planar thermal wave crossing a thin layer of the sample. The device is designed so that heat transfer is locally one-dimensional during a short initial time period. This allows the detected temperature transient to be separated into two distinct components: a short-time, purely one-dimensional part from which sample thermal conductivity can be determined and a remaining long-time part containing the effects of three-dimensionality and of the finite size of surrounding thermal reservoirs. Identification of the one-dimensional component yields a steady temperature difference from which sample thermal conductivity can be determined. Calibration is required to give correct representation of changing heater resistance, system layer thicknesses and solid material thermal conductivities with temperature. In this preliminary study, methanol/water mixtures are measured at atmospheric pressure over the temperature range 30–50°C. The results show that the device has produced a measurement accuracy of within 2.5% over the range of thermal conductivity and temperature of the tests. A relation between measurement uncertainty and the geometric and thermal properties of the system is derived and this is used to identify ways that error could be further reduced
    corecore