196 research outputs found

    Is the interstellar gas of starburst galaxies well mixed?

    Full text link
    The extent to which the ISM in galaxies is well mixed is not yet settled. Measured metal abundances in the diffuse neutral gas of star--forming gas--rich dwarf galaxies are deficient with respect to that of the ionized gas. The reasons, if real, are not clear and need to be based on firm grounds. Far-UV spectroscopy of giant HII regions such as NGC604 in the spiral galaxy M33 using FUSE allows us to investigate possible systematic errors in the metallicity derivation. We still find underabundances of nitrogen, oxygen, argon, and iron in the neutral phase by a factor of~6. This could either be explained by the presence of less chemically evolved gas pockets in the sightlines or by dense clouds out of which HIIregions form. Those could be more metallic than the diffuse medium.Comment: 4 pages, 2 figures;contribution to Starbursts: from 30 Dor to Lyman Break Galaxies, 6 -10 September 2004, Institute of Astronomy, University of Cambridge, U

    Spatially resolved integral field spectroscopy of the ionized gas in IZw18

    Get PDF
    We present a detailed 2D study of the ionized ISM of IZw18 using new PMAS-IFU optical observations. IZw18 is a high-ionization galaxy which is among the most metal-poor starbursts in the local Universe. This makes IZw18 a local benchmark for understanding the properties most closely resembling those prevailing at distant starbursts. Our IFU-aperture (~ 1.4 kpc x 1.4 kpc) samples the entire IZw18 main body and an extended region of its ionized gas. Maps of relevant emission lines and emission line ratios show that higher-excitation gas is preferentially located close to the NW knot and thereabouts. We detect a Wolf-Rayet feature near the NW knot. We derive spatially resolved and integrated physical-chemical properties for the ionized gas in IZw18. We find no dependence between the metallicity-indicator R23 and the ionization parameter (as traced by [OIII]/[OII]) across IZw18. Over ~ 0.30 kpc^2, using the [OIII]4363 line, we compute Te[OIII] values (~ 15000 - 25000 K), and oxygen abundances are derived from the direct determinations of Te[OIII]. More than 70% of the higher-Te[OIII] (> 22000 K) spaxels are HeII4686-emitting spaxels too. From a statistical analysis, we study the presence of variations in the ISM physical-chemical properties. A galaxy-wide homogeneity, across hundreds of parsecs, is seen in O/H. Based on spaxel-by-spaxel measurements, the error-weighted mean of 12 + log(O/H) = 7.11 +/- 0.01 is taken as the representative O/H for IZw18. Aperture effects on the derivation of O/H are discussed. Using our IFU data we obtain, for the first time, the IZw18 integrated spectrum.Comment: Accepted for publication in MNRAS, 13 pages, 10 figures, 4 table

    A Uniform Analysis of the Ly-alpha forest at z = 0 - 5: I. The sample and distribution of clouds at z > 1.7

    Full text link
    We present moderate resolution data for 39 QSOs at z ≈\approx 2 obtained at the Multiple Mirror Telescope. These data are combined with spectra of comparable resolution of 60 QSOs with redshifts greater than 1.7 found in the literature to investigate the distribution of Ly-alpha forest lines in redshift and equivalent width. We find a value for Îł\gamma, the parameter describing the number distribution of Ly-alpha forest lines in redshift, of 1.88±0.221.88\pm0.22 for lines stronger than a rest equivalent width of 0.32 A˚\AA, in good agreement with some previous studies. The Kolmogorov-Smirnov test was applied to the data and it is found that this single power law is a good fit over the relevant redshift ranges. Simulations of the Lyman alpha forest were performed to determine the completeness of the line lists and to test how well the analysis the underlying line statistics, given this level of completeness.Comment: minor corrections to text, 37 Latex pages, 11 encapsulated Postscript figures, uses emulateapj.sty, To appear in the Sept. 2000 ApJS, line lists and spectra available at http://qso.as.arizona.edu/~jscott/Spectra/index.htm

    Kinematics of Interstellar Gas in Nearby UV-Selected Galaxies Measured with HST/STIS Spectroscopy

    Get PDF
    We measure Doppler shifts of interstellar absorption lines in HST/STIS spectra of individual star clusters in nearby UV-selected galaxies. Values for systemic velocities, which are needed to quantify outflow speeds, are taken from the literature, and verified with stellar lines. We detect outflowing gas in eight of 17 galaxies via low-ionization lines (e.g., CII, SiII, AlII), which trace cold and/or warm gas. The starbursts in our sample are intermediate in luminosity (and mass) to dwarf galaxies and luminous infrared galaxies (LIRGs), and we confirm that their outflow speeds (ranging from -100 km/s to nearly -520 km/s with an accuracy of ~80 km/s) are intermediate to those previously measured in dwarf starbursts and LIRGs. We do not detect the outflow in high-ionization lines (such as CIV or SiIV); higher quality data will be needed to empirically establish how velocities vary with the ionization state of the outflow. We do verify that the low-ionization UV lines and optical NaI doublet give roughly consistent outflow velocities solidifying an important link between studies of galactic winds at low and high redshift. To obtain higher signal-to-noise, we create a local average composite spectrum, and compare it to the high-z Lyman Break composite spectrum. Surprisingly, the low-ionization lines show similar outflow velocities in the two samples. We attribute this to a combination of weighting towards higher luminosities in the local composite, as well as both samples being on average brighter than the ``turnover'' luminosity in the v-SFR relation.Comment: 41 pages, 14 figures, accepted for publication in The Astrophysical Journa

    The nature of the Lyman-alpha emission region of FDF-4691

    Full text link
    In order to study the origin of the strong Lyman-alpha emission of high-redshift starburst galaxies we observed and modeled the emission of the z = 3.304 galaxy FDF-4691 (rest-frame EW = 103 Angstroem). The observations show that FDF-4691 is a young starburst galaxy with a (for this redshift) typical metallicity. The broad, double-peaked profile of the Lyman-alpha emission line can be explained assuming a highly turbulent emission region in the inner part of the starburst galaxy, and a surrounding extended shell of low-density neutral gas with a normal dust/gas ratio and with Galactic dust properties. The detection of the Lyman-alpha emission line is explained by the intrinsic broad Lyman-alpha emission and a low HI column density of the neutral shell. A low dust/gas ratio in the neutral shell is not needed to explain the strong Lyman-alpha line.Comment: Accepted for publication in A&A Letter

    Theoretical Modeling of Starburst Galaxies

    Get PDF
    We have modeled a large sample of infrared starburst galaxies using both the PEGASE v2.0 and STARBURST99 codes to generate the spectral energy distribution of the young star clusters. PEGASE utilizes the Padova group tracks while STARBURST99 uses the Geneva group tracks, allowing comparison between the two. We used our MAPPINGS III code to compute photoionization models which include a self-consistent treatment of dust physics and chemical depletion. We use the standard optical diagnostic diagrams as indicators of the hardness of the EUV radiation field in these galaxies. These diagnostic diagrams are most sensitive to the spectral index of the ionizing radiation field in the 1-4 Rydberg region. We find that warm infrared starburst galaxies contain a relatively hard EUV field in this region. The PEGASE ionizing stellar continuum is harder in the 1-4 Rydberg range than that of STARBURST99. As the spectrum in this regime is dominated by emission from Wolf-Rayet (W-R) stars, this difference is most likely due to the differences in stellar atmosphere models used for the W-R stars. We believe that the stellar atmospheres in STARBURST99 are more applicable to the starburst galaxies in our sample, however they do not produce the hard EUV field in the 1-4 Rydberg region required by our observations. The inclusion of continuum metal blanketing in the models may be one solution. Supernova remnant (SNR) shock modeling shows that the contribution by mechanical energy from SNRs to the photoionization models is << 20%. The models presented here are used to derive a new theoretical classification scheme for starbursts and AGN galaxies based on the optical diagnostic diagrams.Comment: 36 pages, 16 figures, to be published in ApJ, July 20, 200

    The interplay between ionized gas and massive stars in the HII galaxy IIZw70: integral field spectroscopy with PMAS

    Full text link
    We performed an integral field spectroscopic study for the HII galaxy IIZw70 in order to investigate the interplay between its ionized interstellar medium (ISM) and the massive star formation (SF). Observations were taken in the optical spectral range (3700-6800 A) with the Potsdam Multi-Aperture Spectrophotometer (PMAS) attached to the 3.5 m telescope at CAHA. We created and analysed maps of spatially distributed emission-lines, continuum emission and properties of the ionized ISM (e.g. physical-chemical conditions, dust extinction, kinematics). We investigated the relation of these properties to the spatial distribution and evolutionary stage of the massive stars. For the first time we have detected the presence of Wolf-Rayet (WR) stars in this galaxy. The peak of the ionized gas emission coincides with the location of the WR bump. The region of the galaxy with lower dust extinction corresponds to the region that shows the lowest values of velocity dispersion and radial velocity. The overall picture suggests that the ISM of this region is being disrupted via photoionization and stellar winds, leading to a spatial decoupling between gas+stars and dust clouds. The bulk of dust appears to be located at the boundaries of the region occupied by the probable ionizing cluster. We also found that this region is associated to the nebular emission in HeII4686 and to the intensity maximum of most emission lines. This indicates that the hard ionizing radiation responsible for the HeII4686 nebular emission can be related to the youngest stars. Within ∌\sim 0.4 x 0.3 kpc^2 in the central burst, we derived O/H using direct determinations of Te[OIII]. We found abundances in the range 12+log(O/H)=7.65-8.05, yielding an error-weighted mean of 12+log(O/H)=7.86 ±\pm0.05.Comment: 10 pages, 10 figures, accepted for publication in A&A, minor changes adde

    A Stellar Population Gradient in VII Zw 403 - Implications for the Formation of Blue Compact Dwarf Galaxies

    Get PDF
    We present evidence for the existence of an old stellar halo in the Blue Compact Dwarf galaxy VII Zw 403. VII Zw 403 is the first Blue Compact Dwarf galaxy for which a clear spatial segregation of the resolved stellar content into a "core-halo" structure is detected. Multicolor HST/WFPC2 observations indicate that active star formation occurs in the central region, but is strikingly absent at large radii. Instead, a globular-cluster-like red giant branch suggests the presence of an old (> 10 Gyr) and metal poor (=-1.92) stellar population in the halo. While the vast majority of Blue Compact Dwarf galaxies has been recognized to possess halos of red color in ground-based surface photometry, our observations of VII Zw 403 establish for the first time a direct correspondence between a red halo color and the presence of old, red giant stars. If the halos of Blue Compact Dwarf galaxies are all home to such ancient stellar populations, then the fossil record conflicts with delayed-formation scenarios for dwarfs.Comment: Accepted for publication in the Ap

    Molecular hydrogen, deuterium and metal abundances in the damped Ly-alpha system at z = 3.025 toward QSO 0347-3819

    Get PDF
    We have detected in high resolution spectra of the quasar Q0347--3819 obtained with the UVES spectrograph at the VLT/Kueyen telescope over 80 absorption features in the Lyman and Werner H2 bands at the redshift of a damped Ly-alpha system at z = 3.025. The z = 3.025 system spans over 80 km/s and exhibits a multicomponent velocity structure in the metal lines. The main component at z = 3.024855 shows a total H2 column density N(H2) = (4.10\pm0.21)*10^{14} cm^{-2} and a fractional molecular abundance f(H2) = (1.94\pm0.10)*10^{-6} derived from the H2 lines arising from J=0 to 5 rotational levels of the ground electronic-vibrational state. For the first time we unambiguously reveal a pronounced [alpha-element/iron-peak] enhancement of [O,Si/Zn] = 0.6\pm0.1 (6 sigma c.l.) at high redshift. The simultaneous analysis of metal and hydrogen lines leads to D/H = (3.75\pm0.25)*10^{-5}. This value is consistent with standard big bang nucleosynthesis if the baryon-to-photon ratio, eta, lies within the range 4.37*10^{-10} <= eta <= 5.32*10^{-10}, implying 0.016 <= Omega_b h^2_100 <= 0.020.Comment: 32 pages, 16 ps figures, accepted to Ap

    I ZW 18 -- a New Wolf-Rayet Galaxy

    Get PDF
    We report the discovery of broad Wolf-Rayet emission lines in the Multiple Mirror Telescope (MMT) spectrum of the NW component of I Zw 18, the lowest-metallicity blue compact dwarf (BCD) galaxy known. Two broad Wolf-Rayet (W-R) bumps at the wavelengths λ\lambda4650 and λ\lambda5800 are detected indicating the presence of WN and WC stars. The total numbers of WN and WC stars inferred from the luminosities of the broad He II λ\lambda4686 and C IV λ\lambda5808 lines are equal to 17(+/-)4 and 5(+/-)2, respectively. The W-R to O stars number ratio is equal to about 0.02, in satisfactory agreement with the value predicted by massive stellar evolution models with enhanced mass loss rates. The WC stars in the northwest component of I Zw 18 can be responsible for the presence of the nebular He II λ\lambda4686 emission line, however the observed intensity of this line is several times larger than model predictions, and other sources of ionizing radiation at wavelengths shorter than 228\AA are necessary.Comment: Ap.J.Lett., in pres
    • 

    corecore