21 research outputs found

    A halo of reduced dinoflagellate abundances in and around eelgrass beds

    No full text
    Seagrass beds provide a variety of ecosystem services, both within and outside the bounds of the habitat itself. Here we use environmental DNA (eDNA) amplicons to analyze a broad cross-section of taxa from ecological communities in and immediately surrounding eelgrass (Zostera marina). Sampling seawater along transects extending alongshore outward from eelgrass beds, we demonstrate that eDNA provides meter-scale resolution of communities in the field. We evaluate eDNA abundance indices for 13 major phylogenetic groups of marine and estuarine taxa along these transects, finding highly local changes linked with proximity to Z. marina for a diverse group of dinoflagellates, and for no other group of taxa. Eelgrass habitat is consistently associated with dramatic reductions in dinoflagellate abundance both within the contiguous beds and for at least 15 m outside, relative to nearby sites without eelgrass. These results are consistent with the hypothesis that eelgrass-associated communities have allelopathic effects on dinoflagellates, and that these effects can extend in a halo beyond the bounds of the contiguous beds. Because many dinoflagellates are capable of forming harmful algal blooms (HABs) toxic to humans and other animal species, the apparent salutary effect of eelgrass habitat on neighboring waters has important implications for public health as well as shellfish aquaculture and harvesting

    Variation in Survival and Gut Microbiome Composition of Hatchery-Grown Native Oysters at Various Locations within the Puget Sound.

    No full text
    The Olympia oyster (Ostrea lurida) of the Puget Sound suffered a dramatic population crash, but restoration efforts hope to revive this native species. One overlooked variable in the process of assessing ecosystem health is association of bacteria with marine organisms and the environments they occupy. Oyster microbiomes are known to differ significantly between species, tissue type, and the habitat in which they are found. The goals of this study were to determine the impact of field site and habitat on the oyster microbiome and to identify core oyster-associated bacteria in the Puget Sound. Olympia oysters from one parental family were deployed at four sites in the Puget Sound both inside and outside of eelgrass (Zostera marina) beds. Using 16S rRNA gene amplicon sequencing of the oyster gut, shell, and surrounding seawater and sediment, we demonstrate that gut-associated bacteria are distinct from the surrounding environment and vary by field site. Furthermore, regional differences in the gut microbiota are associated with the survival rates of oysters at each site after 2 months of field exposure. However, habitat type had no influence on microbiome diversity. Further work is needed to identify the specific bacterial dynamics that are associated with oyster physiology and survival rates. IMPORTANCE This is the first exploration of the microbial colonizers of the Olympia oyster, a native oyster species to the West Coast, which is a focus of restoration efforts. The patterns of differential microbial colonization by location reveal microscale characteristics of potential restoration sites which are not typically considered. These microbial dynamics can provide a more holistic perspective on the factors that may influence oyster performance

    Temperature and microbe mediated impacts of the San Diego Bay ostreid herpesvirus (OsHV-1) microvariant on juvenile Pacific oysters

    No full text
    The ostreid herpesvirus (OsHV-1) was recently detected in San Diego Bay for the first time in farmed juvenile Pacific oysters (Crassostrea gigas). Due to the virus’ ability to cause mass mortality (50 to 100%), it is important to determine the factors that promote infection as well as the consequences of infection. Here we assess the role of temperature in controlling OsHV-1 induced mortality. Pacific oysters were exposed to the San Diego Bay microvariant of OsHV-1 at 4 different temperatures (15, 18, 21, and 24°C). While OsHV-1 was able to replicate in oyster tissues at all temperatures, it did not induce mortality at 15°C, only at the higher temperatures. Additionally, we examined oyster tissue-associated bacterial response to OsHV-1 infection. As shown previously, bacterial richness increased following OsHV-1 exposure, and then decreased as the oysters became sick and died. Four bacterial taxa linked to the San Diego Bay microvariant infection, including Arcobacter, Vibrio, Amphritea, and Pseudoalteromonas, were the same as those shown for other microvariant infections in other studies from globally distributed oysters, suggesting a similar spectrum of co-infection irrespective of geography and microvariant type. The significant shift in the bacterial community following exposure suggests a weakening of the host defenses as a result of OsHV-1 infection, which potentially leads to adverse opportunistic bacterial infection

    Non-targeted tandem mass spectrometry enables the visualization of organic matter chemotype shifts in coastal seawater

    No full text
    Urbanization along coastlines alters marine ecosystems including contributing molecules of anthropogenic origin to the coastal dissolved organic matter (DOM) pool. A broad assessment of the nature and extent of anthropogenic impacts on coastal ecosystems is urgently needed to inform regulatory guidelines and ecosystem management. Recently, non-targeted tandem mass spectrometry approaches are gaining momentum for the analysis of global organic matter chemotypes including a wide array of natural and anthropogenic compounds. In line with these efforts, we developed a non-targeted liquid chromatography tandem mass spectrometry workflow that utilizes advanced data analysis approaches such as feature-based molecular networking and repository-scale spectrum searches. This workflow allows the scalable comparison and mapping of seawater chemotypes from large-scale spatial surveys as well as molecular family level annotation of unknown compounds. As a case study, we visualized organic matter chemotype shifts in coastal environments in northern San Diego, USA, after significant rain fall in winter 2017/2018 and highlight potential anthropogenic impacts. The observed seawater chemotype shifted significantly after a major rain event. Molecular drivers of this shift could be attributed to multiple anthropogenic compounds, including pesticides (Imazapyr and Isoxaben), cleaning products (Benzyl-tetradecyl-dimethylammonium) and chemical additives (Hexa(methoxymethyl)melamine) and potential degradation products. By expanding the search of identified xenobiotics to other public tandem mass spectrometry datasets, we further contextualized their possible origin and show their importance in other ecosystems. The mass spectrometry and data analysis pipelines applied here offer a scalable framework for future molecular mapping and monitoring of marine ecosystems, which will contribute to a deliberate assessment of how chemical pollution impacts our oceans.<br /

    Non-targeted tandem mass spectrometry enables the visualization of organic matter chemotype shifts in coastal seawater

    No full text
    Urbanization along coastlines alters marine ecosystems including contributing molecules of anthropogenic origin to the coastal dissolved organic matter (DOM) pool. A broad assessment of the nature and extent of anthropogenic impacts on coastal ecosystems is urgently needed to inform regulatory guidelines and ecosystem management. Recently, non-targeted tandem mass spectrometry approaches are gaining momentum for the analysis of global organic matter composition (chemotypes) including a wide array of natural and anthropogenic compounds. In line with these efforts, we developed a non-targeted liquid chromatography tandem mass spectrometry (LC-MS/MS) workflow that utilizes advanced data analysis approaches such as feature-based molecular networking and repository-scale spectrum searches. This workflow allows the scalable comparison and mapping of seawater chemotypes from large-scale spatial surveys as well as molecular family level annotation of unknown compounds. As a case study, we visualized organic matter chemotype shifts in coastal environments in northern San Diego, USA, after notable rain fall in winter 2017/2018 and highlight potential anthropogenic impacts. The observed seawater chemotype, consisting of 4384 LC-MS/MS features, shifted significantly after a major rain event. Molecular drivers of this shift could be attributed to multiple anthropogenic compounds, including pesticides (Imazapyr and Isoxaben), cleaning products (Benzyl-tetradecyl-dimethylammonium) and chemical additives (Hexa (methoxymethyl)melamine) and potential degradation products. By expanding the search of identified xenobiotics to other public tandem mass spectrometry datasets, we further contextualized their possible origin and show their importance in other ecosystems. The mass spectrometry and data analysis pipelines applied here offer a scalable framework for future molecular mapping and monitoring of marine ecosystems, which will contribute to a deliberate assessment of how chemical pollution impacts our oceans

    Host biology, ecology and the environment influence microbial biomass and diversity in 101 marine fish species

    No full text
    Fish are the most diverse and widely distributed vertebrates, yet little is known about the microbial ecology of fishes nor the biological and environmental factors that influence fish microbiota. To identify factors that explain microbial diversity patterns in a geographical subset of marine fish, we analyzed the microbiota (gill tissue, skin mucus, midgut digesta and hindgut digesta) from 101 species of Southern California marine fishes, spanning 22 orders, 55 families and 83 genera, representing ~25% of local marine fish diversity. We compare alpha, beta and gamma diversity while establishing a method to estimate microbial biomass associated with these host surfaces. We show that body site is the strongest driver of microbial diversity while microbial biomass and diversity is lowest in the gill of larger, pelagic fishes. Patterns of phylosymbiosis are observed across the gill, skin and hindgut. In a quantitative synthesis of vertebrate hindguts (569 species), we also show that mammals have the highest gamma diversity when controlling for host species number while fishes have the highest percent of unique microbial taxa. The composite dataset will be useful to vertebrate microbiota researchers and fish biologists interested in microbial ecology, with applications in aquaculture and fisheries management

    CALIPSO: A Randomized Controlled Trial of Calfactant for Acute Lung Injury in Pediatric Stem Cell and Oncology Patients

    Get PDF
    To assess if calfactant reduces mortality among children with leukemia/lymphoma or after hematopoietic cell transplantation (HCT) with pediatric acute respiratory distress syndrome (PARDS), we conducted a multicenter, randomized, placebo-controlled, double-blinded trial in 17 pediatric intensive care units (PICUs) of tertiary care children's hospitals. Patients ages 18 months to 25 years with leukemia/lymphoma or having undergone HCT who required invasive mechanical ventilation for bilateral lung disease with an oxygenation index (OI) > 10 and <37 were studied. Interventions used were intratracheal instillation of either calfactant or air placebo (1 or 2 doses). Forty-three subjects were enrolled between November 2010 and June 2015: 26 assigned to calfactant and 17 to placebo. There were no significant differences in the primary outcome, which was survival to PICU discharge (adjusted hazard ratio of mortality for calfactant versus placebo, 1.78; 95% confidence interval, .53 to 6.05; P = .35), OI, functional outcomes, or ventilator-free days, adjusting for risk strata and Pediatric Risk of Mortality (PRISM) score. Despite the risk-stratified randomization, more allogeneic HCT patients received calfactant (76% and 39%, respectively) due to low recruitment at various sites. This imbalance is important because independent of treatment arm and while adjusting for PRISM score, those with allogeneic HCT had a nonsignificant higher likelihood of death at PICU discharge (adjusted odds ratio, 3.02; 95% confidence interval, .76 to 12.06; P = .12). Overall, 86% of the patients who survived to PICU discharge also were successfully discharged from the hospital. These data do not support the use of calfactant among this high mortality group of pediatric leukemia/lymphoma and/or HCT patients with PARDS to increase survival. In spite of poor enrollment, allogeneic HCT patients with PARDS appeared to be characterized by higher mortality than even other high-risk immunosuppressed groups. Conducting research among these children is challenging but necessary, because survival to PICU discharge usually results in successful discharge to home
    corecore