57 research outputs found

    Common transcriptional programs and the role of chemokine (C-C motif) ligand 20 (CCL20) in cell migration of cholangiocarcinoma

    Get PDF
    The incidence of cholangiocarcinoma (CCA) has risen in many countries, but there is still no appropriate screening and treatment available. The growing number of microarray data published todays can be a powerful resource for the discovery of biomarkers to tackle challenges in the management of CCA. This study analyzed multiple microarray datasets to identify the common transcriptional networks in CCA and select a possible biomarker for functional study in CCA cell lines. A systematic searching identified 4 microarray datasets from Gene Expression Omnibus (GEO) repository and PubMed articles. Differential expression analysis between tumor and normal tissues was performed in each dataset. In order to characterize the common expression pattern, differentially expressed genes (DEGs) from all datasets were combined and visualized by hierarchical clustering and heatmap. Gene enrichment analysis performed in each cluster revealed that over-expressed DEGs were enriched in cell cycle, cell migration and response to cytokines while under-expressed DEGs were enriched in metabolic processes such as oxidation-reduction, lipid, and drug. To explain tumor characteristics, genes enriched in cell migration and response to cytokines were further investigated. Among these genes, CCL20 was selected for functional study because its role has never been studied in CCA. Moreover, its signaling may be regulated by disrupting its only receptor, CCR6. Treatment with recombinant CCL20 induced higher cell migration and increased expression of N-cad. In contrast, knockdown of CCR6 by siRNA reduced cell migration ability and decreased N-cadherin level. Altogether, these results suggested the contribution of CCL20/CCR6 signaling in cell migration through epithelial-mesenchymal transition process. Thus, CCL20/CCR6 signaling might be a target for the management of CCA

    Blockade of the LRP16-PKR-NF-κB signaling axis sensitizes colorectal carcinoma cells to DNA-damaging cytotoxic therapy.

    Get PDF
    Acquired therapeutic resistance by tumors is a substantial impediment to reducing the morbidity and mortality that are attributable to human malignancies. The mechanisms responsible for the dramatic shift between chemosensitivity and chemoresistance in colorectal carcinoma have not been defined. Here, we report that LRP16 selectively interacts and activates double-stranded RNA-dependent kinase (PKR), and also acts as scaffolds to assist the formation of a ternary complex of PKR and IKK beta, prolonging the polymers of ADP-ribose (PAR)-dependent nuclear factor kappa B (NF-kappa B) transactivation caused by DNA-damaging agents and confers acquired chemoresistance. We also identified a small molecule, MRS2578, which strikingly abrogated the binding of LRP16 to PKR and IKK beta, converting LRP16 into a death molecule and forestalling colon tumorigenesis. Inclusion of MRS2578 with etoposide, versus each drug alone, exhibited synergistic antitumor cytotoxicity in xenografts. Our combinatorial approach introduces a strategy to enhance the efficacy of genotoxicity therapies for the treatment of tumors.Peer reviewe

    A genome scan for quantitative trait loci affecting cyanogenic potential of cassava root in an outbred population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cassava (<it>Manihot esculenta </it>Crantz) can produce cyanide, a toxic compound, without self-injury. That ability was called the cyanogenic potential (CN). This project aimed to identify quantitative trait loci (QTL) associated with the CN in an outbred population derived from 'Hanatee' × 'Huay Bong 60', two contrasting cultivars. CN was evaluated in 2008 and in 2009 at Rayong province, and in 2009 at Lop Buri province, Thailand. CN was measured using a picrate paper kit. QTL analysis affecting CN was performed with 303 SSR markers.</p> <p>Results</p> <p>The phenotypic values showed continuous variation with transgressive segregation events with more (115 ppm) and less CN (15 ppm) than either parent ('Hanatee' had 33 ppm and 'Huay Bong 60' had 95 ppm). The linkage map consisted of 303 SSR markers, on 27 linkage groups with a map that encompassed 1,328 cM. The average marker interval was 5.8 cM. Five QTL underlying CN were detected. <it>CN08R1</it>from 2008 at Rayong, <it>CN09R1</it>and <it>CN09R2 </it>from 2009 at Rayong, and <it>CN09L1 </it>and <it>CN09L2 </it>from 2009 at Lop Buri were mapped on linkage group 2, 5, 10 and 11, respectively. Among all the identified QTL, <it>CN09R1 </it>was the most significantly associated with the CN trait with LOD score 5.75 and explained the greatest percentage of phenotypic variation (%Expl.) of 26%.</p> <p>Conclusions</p> <p>Five new QTL affecting CN were successfully identified from 4 linkage groups. Discovery of these QTL can provide useful markers to assist in cassava breeding and studying genes affecting the trait.</p

    The Plant Pathogen Pseudomonas syringae pv. tomato Is Genetically Monomorphic and under Strong Selection to Evade Tomato Immunity

    Get PDF
    Recently, genome sequencing of many isolates of genetically monomorphic bacterial human pathogens has given new insights into pathogen microevolution and phylogeography. Here, we report a genome-based micro-evolutionary study of a bacterial plant pathogen, Pseudomonas syringae pv. tomato. Only 267 mutations were identified between five sequenced isolates in 3,543,009 nt of analyzed genome sequence, which suggests a recent evolutionary origin of this pathogen. Further analysis with genome-derived markers of 89 world-wide isolates showed that several genotypes exist in North America and in Europe indicating frequent pathogen movement between these world regions. Genome-derived markers and molecular analyses of key pathogen loci important for virulence and motility both suggest ongoing adaptation to the tomato host. A mutational hotspot was found in the type III-secreted effector gene hopM1. These mutations abolish the cell death triggering activity of the full-length protein indicating strong selection for loss of function of this effector, which was previously considered a virulence factor. Two non-synonymous mutations in the flagellin-encoding gene fliC allowed identifying a new microbe associated molecular pattern (MAMP) in a region distinct from the known MAMP flg22. Interestingly, the ancestral allele of this MAMP induces a stronger tomato immune response than the derived alleles. The ancestral allele has largely disappeared from today's Pto populations suggesting that flagellin-triggered immunity limits pathogen fitness even in highly virulent pathogens. An additional non-synonymous mutation was identified in flg22 in South American isolates. Therefore, MAMPs are more variable than expected differing even between otherwise almost identical isolates of the same pathogen strain

    Dynamic Evolution of Pathogenicity Revealed by Sequencing and Comparative Genomics of 19 Pseudomonas syringae Isolates

    Get PDF
    Closely related pathogens may differ dramatically in host range, but the molecular, genetic, and evolutionary basis for these differences remains unclear. In many Gram- negative bacteria, including the phytopathogen Pseudomonas syringae, type III effectors (TTEs) are essential for pathogenicity, instrumental in structuring host range, and exhibit wide diversity between strains. To capture the dynamic nature of virulence gene repertoires across P. syringae, we screened 11 diverse strains for novel TTE families and coupled this nearly saturating screen with the sequencing and assembly of 14 phylogenetically diverse isolates from a broad collection of diseased host plants. TTE repertoires vary dramatically in size and content across all P. syringae clades; surprisingly few TTEs are conserved and present in all strains. Those that are likely provide basal requirements for pathogenicity. We demonstrate that functional divergence within one conserved locus, hopM1, leads to dramatic differences in pathogenicity, and we demonstrate that phylogenetics-informed mutagenesis can be used to identify functionally critical residues of TTEs. The dynamism of the TTE repertoire is mirrored by diversity in pathways affecting the synthesis of secreted phytotoxins, highlighting the likely role of both types of virulence factors in determination of host range. We used these 14 draft genome sequences, plus five additional genome sequences previously reported, to identify the core genome for P. syringae and we compared this core to that of two closely related non-pathogenic pseudomonad species. These data revealed the recent acquisition of a 1 Mb megaplasmid by a sub-clade of cucumber pathogens. This megaplasmid encodes a type IV secretion system and a diverse set of unknown proteins, which dramatically increases both the genomic content of these strains and the pan-genome of the species

    <i>Mangifera indica</i> ‘Namdokmai’ Prevents Neuronal Cells from Amyloid Peptide Toxicity and Inhibits BACE-1 Activities in a <i>Drosophila</i> Model of Alzheimer’s Amyloidosis

    No full text
    Alzheimer’s disease (AD) is a progressive neurological illness with few effective treatments. Thus, ameliorating the effects of AD using natural products has attracted global attention with promising efficacy and safety. In this study, ten tropical fruits including Ananas comosus ‘Phulae’, Ananas comosus ‘Pattavia’, Carica papaya ‘Khaekdum’, Carica papaya ‘Khaeknuan’, Durio zibethinus ‘Monthong’, Durio zibethinus ‘Chanee’, Psidium guajava ‘Kimju’, Psidium guajava ‘Keenok’, Mangifera indica ‘Kaew’ and Mangifera indica ‘Namdokmai’ were screened for their inhibitory activities against the key enzymes, cholinesterases and β-secretase (BACE-1), involved in AD pathogenesis. The top three fruit extracts with promising in vitro anti-AD activities were further investigated using rat pheochromocytoma PC-12 neuronal cell line and Drosophila AD model. Data showed that M. indica ‘Kaew’, M. indica ‘Namdokmai’ and P. guajava ‘Kimju’ reduced Aβ1–42-mediated neurotoxicity by promoting glutathione-dependent enzymes, while M. indica ‘Namdokmai’ limited Aβ1–42 peptide formation via BACE-1 inhibition and amended locomotory behavior of the Drosophila AD model. Results indicated the potential anti-AD properties of tropical fruits, particularly M. indica ‘Namdokmai’ in the prevention of Aβ1–42-mediated neurotoxicity and as a BACE-1 blocker

    Low-doses of indinavir boosted with ritonavir in HIV-infected Thai patients: pharmacokinetics, efficacy and tolerability

    No full text
    Objectives: To assess the steady-state pharmacokinetics of two reduced doses of indinavir boosted with ritonavir (indinavir/ritonavir) in HIV-infected Thai patients. Patients and methods: Thirteen immunocompromised antiretroviral-naive patients (6 males, 7 females) initiated 600/100 mg indinavir/ritonavir, zidovudine and lamivudine, every 12 h. After 1 month, blood samples were taken at pre-dose, and 0.5, 1, 1.5, 2, 2.5, 3, 4, 5, 6, 8 and 12 h after drug intake. Indinavir dosing was then reduced to 400 mg (twice daily) and 1 week later an identical series of samples were drawn. Patients then resumed 600 mg of indinavir. HIV-1 RNA viral load was determined at 8, 24 and 48 weeks. Indinavir plasma levels were determined by HPLC and pharmacokinetic parameters by non-compartmental analysis. Results: Median (range) weight was 58 kg (51-73) for men and 53 kg (46-59) for women. On 600 mg of indinavir, median indinavir AUC, C-max and C-min were 39.3 mg(.)h/L (20.6-50.5), 6.2 mg/L (3.7-9.0) and 0.41 mg/L (0.12-0.77), respectively, and on indinavir 400 mg, 18.3 mg(.)h/L (11.1-33.0), 3.8 mg/L (2.2-7.8) and 0.17 mg/L (0.10-0.39), respectively. No renal complications were observed. At 48 weeks, 6/13 (46%) patients had stopped 600 mg of indinavir due to intolerability (gastrointestinal and cutaneous), and 5/7 (71%) patients had a HIV-1 viral load < 50 copies/mL. Conclusions: Reduced doses of indinavir/ritonavir maintained adequate indinavir plasma levels compared to current guidelines suggesting that these doses are efficacious in this setting. Considering the poor tolerability of 600 mg of indinavir, the 400 mg of indinavir may be preferred due to its lower exposure indices but long-term efficacy data are needed
    corecore