70 research outputs found

    Experimental characterization of the electronic structure of anatase TiO2: Thermopower modulation

    Full text link
    Thermopower (S) for anatase TiO2 epitaxial films (n3D: 1E17-1E21 /cm3) and the gate voltage (Vg) dependence of S for thin film transistors (TFTs) based on TiO2 films were investigated to clarify the electronic density of states (DOS) around the conduction band bottom. The slope of the |S|-log n3D plots was -20 {\mu}V/K, which is an order magnitude smaller than that of semiconductors (-198 {\mu}V/K), and the |S| values for the TFTs increased with Vg in the low Vg region, suggesting that the extra tail states are hybridized with the original conduction band bottom.Comment: 11 pages, 4 figure

    Electric-Field Modulation of Thermopower for the KTaO3 Field Effect Transistors

    Full text link
    We show herein fabrication and field-modulated thermopower for KTaO3 single-crystal based field-effect transistors (FETs). The KTaO3 FET exhibits field effect mobility of ~8 cm2/Vs, which is ~4 times larger than that of SrTiO3 FETs. The thermopower of the KTaO3 FET decreased from 600 to 220 microV/K by the application of gate electric field up to 1.5 MV/cm, ~400 microV/K below that of an SrTiO3 FET, clearly reflecting the smaller carrier effective mass of KTaO3.Comment: 13 pages, 4 figure

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    ハイパースぺクトル画像の一般物体認識への応用

    No full text
    corecore