21 research outputs found

    Direct Observation of Sub-picosecond Hole Injection from Lead Halide Perovskite by Differential Transient Transmission Spectroscopy

    Full text link
    Efficient charge separation at the interfaces between the perovskite and with the carrier transport layers is crucial for perovskite solar cells to achieve high power conversion efficiency. We systematically investigate the hole injection dynamics from MAPbI3_3 perovskite to three typical hole transport materials (HTMs) PEDOT:PSS, PTAA and NiOx_x by means of pump-probe transmission measurements. We photoexcite only near the MAPbI3_3/HTM interface or near the back surface, and measure the differential transient transmission between the two excitation configurations to extract the carrier dynamics directly related to the hole injection. The differential transmission signals directly monitor the hole injections to PTAA and PEDOT:PSS being complete within 1 and 2 ps, respectively, and that to NiOx_x exhibiting an additional slow process of 40 ps time scale. The obtained injection dynamics are discussed in comparison with the device performance of the solar cells containing the same MAPbI3_3/HTM interfaces.Comment: 5 pages, 5 figure

    Ultrafast Electron-Phonon Decoupling in Graphite

    Get PDF
    We report the ultrafast dynamics of the 47.4 THz coherent phonons of graphite interacting with a photoinduced non-equilibrium electron-hole plasma. Unlike conventional materials, upon photoexcitation the phonon frequency of graphite upshifts, and within a few picoseconds relaxes to the stationary value. Our first-principles density functional calculations demonstrate that the phonon stiffening stems from the light-induced decoupling of the non-adiabatic electron-phonon interaction by creating the non-equilibrium electron-hole plasma. Time-resolved vibrational spectroscopy provides a window on the ultrafast non-equilibrium electron dynamics.Comment: 4 pages, 4 figure

    Ultrafast dynamics of coherent optical phonons and nonequilibrium electrons in transition metals

    Get PDF
    The femtosecond optical pump-probe technique was used to study dynamics of photoexcited electrons and coherent optical phonons in transition metals Zn and Cd as a function of temperature and excitation level. The optical response in time domain is well fitted by linear combination of a damped harmonic oscillation because of excitation of coherent E2gE_{2g} phonon and a subpicosecond transient response due to electron-phonon thermalization. The electron-phonon thermalization time monotonically increases with temperature, consistent with the thermomodulation scenario, where at high temperatures the system can be well explained by the two-temperature model, while below \approx 50 K the nonthermal electron model needs to be applied. As the lattice temperature increases, the damping of the coherent E2gE_{2g} phonon increases, while the amplitudes of both fast electronic response and the coherent E2gE_{2g} phonon decrease. The temperature dependence of the damping of the E2gE_{2g} phonon indicates that population decay of the coherent optical phonon due to anharmonic phonon-phonon coupling dominates the decay process. We present a model that accounts for the observed temperature dependence of the amplitude assuming the photoinduced absorption mechanism, where the signal amplitude is proportional to the photoinduced change in the quasiparticle density. The result that the amplitude of the E2gE_{2g} phonon follows the temperature dependence of the amplitude of the fast electronic transient indicates that under the resonant condition both electronic and phononic responses are proportional to the change in the dielectric function.Comment: 10 pages, 9 figures, to appear in Physical Review

    Depth-Resolved Phonon-Plasmon Dynamics of GaAs

    No full text

    Ultrafast phonon dynamics of epitaxial atomic layers of Bi on Si(111)

    Get PDF
    Ultrathin bismuth (Bi) layers on Si(111)-7×7 undergo a structural phase transformation with reducing the number of atomic layers at 3 bilayers (BL). We investigate the phonon dynamics of the Bi films close to the phase transformation by pump-probe reflectivity measurements. Coherent A1g and Eg phonons at 3 and 2 THz are clearly observed for the Bi layers with thicknesses down to 3 BL, confirming their rhombohedral crystalline structure. The A1g frequency exhibits an abrupt redshift and splits into two components at 3 BL, which are attributed to the vertical motions of Bi atoms localized at the surface and subsurface bilayers. The Eg frequency, by contrast, shows a gradual blueshift with reducing the thickness, possibly due to the lateral compressive stress at the Bi/Si interface. Below 3 BL, no coherent phonon signal is detected, in agreement with the phase transformation to the black-phosphoruslike structure. Our observations indicate that the vertical vibrations are significantly softened at 3 BL, but become almost as hard as those in the bulk crystal by adding another bilayer

    Post-processing noise reduction via all-photon recording in dynamic light scattering

    No full text
    Dynamic light scattering (DLS) is widely used for the characterization of the size distributions of polymers and nanoparticles in dispersions. The time correlation function of the scattered light intensity can be calculated from the intensity fluctuation with time and converted into the size of the scatterers. It has been difficult to apply DLS to a dispersion containing large pollutant particles, however, because the pollutants moving in the dispersion can give rise to intense noise signals from time to time during data acquisition. In conventional DLS, this type of noise renders the entire measurement useless. Here we report a novel software-based DLS system in which the arrival times of all the scattered photons are recorded using a time-to-digital converter, and the time correlation function is calculated exclusively from the uncontaminated parts of the data in post-processing. We demonstrate the validity of this noise reduction scheme by evaluating the silica nanoparticle size in a dispersion containing a small number of micrometer-sized PMMA particles as a model contaminant
    corecore