57 research outputs found

    A benzene-degrading nitrate-reducing microbial consortium displays aerobic and anaerobic benzene degradation pathways

    Get PDF
    All sequence data from this study were deposited at the European Bioinformatics Institute under the accession numbers ERS1670018 to ERS1670023. Further, all assigned genes, taxonomy, function, sequences of contigs, genes and proteins can be found in Table S3.In this study, we report transcription of genes involved in aerobic and anaerobic benzene degradation pathways in a benzene-degrading denitrifying continuous culture. Transcripts associated with the family Peptococcaceae dominated all samples (2136% relative abundance) indicating their key role in the community. We found a highly transcribed gene cluster encoding a presumed anaerobic benzene carboxylase (AbcA and AbcD) and a benzoate-coenzyme A ligase (BzlA). Predicted gene products showed >96% amino acid identity and similar gene order to the corresponding benzene degradation gene cluster described previously, providing further evidence for anaerobic benzene activation via carboxylation. For subsequent benzoyl-CoA dearomatization, bam-like genes analogous to the ones found in other strict anaerobes were transcribed, whereas gene transcripts involved in downstream benzoyl-CoA degradation were mostly analogous to the ones described in facultative anaerobes. The concurrent transcription of genes encoding enzymes involved in oxygenase-mediated aerobic benzene degradation suggested oxygen presence in the culture, possibly formed via a recently identified nitric oxide dismutase (Nod). Although we were unable to detect transcription of Nod-encoding genes, addition of nitrite and formate to the continuous culture showed indication for oxygen production. Such an oxygen production would enable aerobic microbes to thrive in oxygen-depleted and nitrate-containing subsurface environments contaminated with hydrocarbons.This study was supported by a grant of BE-Basic-FES funds from the Dutch Ministry of Economic Affairs. The research of A.J.M. Stams is supported by an ERC grant (project 323009) and the gravitation grant “Microbes for Health and Environment” (project 024.002.002) of the Netherlands Ministry of Education, Culture and Science. F. Hugenholtz was supported by the same gravitation grant (project 024.002.002). B. Hornung is supported by Wageningen University and the Wageningen Institute for Environment and Climate Research (WIMEK) through the IP/OP program Systems Biology (project KB-17-003.02-023).info:eu-repo/semantics/publishedVersio

    The use of stable isotope probing to identify key iron-reducing microorganisms involved in anaerobic benzene degradation.

    No full text
    Here, we present a detailed functional and phylogenetic characterization of an iron-reducing enrichment culture maintained in our lab with benzene as sole carbon and energy source. We used DNA-stable isotope probing to identify microbes within the enrichment most active in the assimilation of (13)C-label. When (12)C(6)- and (13)C(6)-benzene were added as comparative substrates, marked differences in the quantitative buoyant density distribution became apparent especially for uncultured microbes within the Gram-positive Peptococcaceae, closely related to environmental clones retrieved from contaminated aquifers world wide and only distantly related to cultured representatives of the genus Thermincola. Prominent among the other constituents of the enrichment were uncultured Deltaproteobacteria, as well as members of the Actinobacteria. Although their presence within the enrichment seems to be stable they did not assimilate (13)C-label as significantly as the Clostridia within the time course of our experiment. We hypothesize that benzene degradation in our enrichment involves an unusual syntrophy, where members of the Clostridia primarily oxidize benzene. Electrons from the contaminant are both directly transferred to ferric iron by the primary oxidizers, but also partially shared with the Desulfobulbaceae as syntrophic partners. Alternatively, electrons may also be quantitatively transferred to the partners, which then reduce the ferric iron. Thus our results provide evidence for the importance of a novel clade of Gram-positive iron-reducers in anaerobic benzene degradation, and a role of syntrophic interactions in this process. These findings shed a totally new light on the factors controlling benzene degradation in anaerobic contaminated environments

    Identification of intermediates formed during anaerobic benzene degradation by an iron-reducing enrichment culture.

    No full text
    Anaerobic benzene degradation is an important process in contaminated aquifers but is poorly understood due to the scarcity of microbial cultures for study. We have enriched a ferric iron-reducing culture that completely mineralizes benzene to CO2. With 13C6-labelled benzene as the growth substrate, ring-labelled benzoate was identified as a major intermediate by liquid chromatography/tandem mass spectrometry (LC/MS/MS) analysis of culture supernatants. With increasing incubation time, 13C7-labelled benzoate appeared, indicating that the carboxyl group of benzoate derived from CO2 that was produced from mineralization of labelled benzene. This was confirmed by growing the culture in 13C-bicarbonate-buffered medium with unlabelled benzene as the substrate, as the label appeared in the carboxyl group of benzoate produced. Phenol was also identified as an intermediate at high concentration. However, it was clearly shown that phenol was formed abiotically by autoxidation of benzene during the sampling and analysis procedure as a result of exposure to air. The results suggest that, in our culture, anaerobic benzene degradation proceeds via carboxylation and that caution should be exercised in interpreting hydroxylated benzene derivatives as metabolic intermediates of anaerobic benzene degradation

    Desulfitobacterium aromaticivorans sp. nov. and Geobacter toluenoxydans sp. nov., iron-reducing bacteria capable of anaerobic degradation of monoaromatic hydrocarbons.

    No full text
    Dissimilatory iron reduction plays a significant role in subsurface environments. Currently, it is assumed that members of the genus Geobacter constitute the majority of the iron-reducing micro-organisms that oxidize aromatic compounds in contaminated subsurface environments. Here, we report the isolation of two phylogenetically distinct pure cultures of iron-reducing degraders of monoaromatic hydrocarbons, strain TMJ1(T), which belongs to the genus Geobacter within the Deltaproteobacteria, and strain UKTL(T), belonging to the genus Desulfitobacterium within the Clostridia. Both strains utilize a wide range of substrates as carbon and energy sources, including the aromatic compounds toluene, phenol and p-cresol. Additionally, strain UKTL(T) utilizes o-xylene and TMJ1(T) utilizes m-cresol. Anaerobic degradation of toluene in both strains and o-xylene in strain UKTL(T) is initiated by activation with fumarate addition to the methyl group. The genomic DNA G+C contents of strains TMJ1(T) and UKTL(T) are 54.4 and 47.7 mol%, respectively. Based on a detailed physiological characterization and phylogenetic analysis of the 16S rRNA genes of both strains, we propose the names Desulfitobacterium aromaticivorans sp. nov. (type strain UKTL(T) =DSM 19510(T) =JCM 15765(T)) and Geobacter toluenoxydans sp. nov. (type strain TMJ1(T) =DSM 19350(T) =JCM 15764(T)) to accommodate these strains. To the best of our knowledge, strain UKTL(T) is the first described spore-forming, iron-reducing bacterium that can degrade aromatic hydrocarbons

    The role of adenosine diphosphate mediated platelet responsiveness for the stability of platelet integrity in citrated whole blood under <i>ex vivo</i> conditions

    No full text
    <div><p>Background</p><p>Platelets are important for effective hemostasis and considered to be involved in pathophysiological processes, e.g. in cardiovascular diseases. Platelets provided for research or for therapeutic use are frequently separated from citrated whole blood (WB) stored for different periods of time. Although functionally intact platelets are required, the stability of platelet integrity, e.g. adenosine diphosphate (ADP) mediated responsiveness, has never been thoroughly investigated in citrated WB under <i>ex vivo</i> conditions.</p><p>Objectives</p><p>Platelet integrity was evaluated at different time points in citrated WB units, collected from healthy donors and stored for 5 days at ambient temperature. The analysis included the measurement of activation markers, of induced light transmission aggregometry and of purinergic receptor expression or function. Inhibitory pathways were explored by determination of basal vasodilator-stimulated phosphoprotein (VASP)-phosphorylation, intracellular cyclic nucleotide levels and the content of phosphodiesterase 5A. Fresh peripheral blood (PB) samples served as controls.</p><p>Results</p><p>On day 5 of storage, thrombin receptor activating peptide-6 (TRAP-6) stimulated CD62P expression and fibrinogen binding were comparable to PB samples. ADP induced aggregation continuously decreased during storage. Purinergic receptor expression remained unchanged, whereas the P2Y1 activity progressively declined in contrast to preserved P2Y12 and P2X1 function. Inhibitory pathways were unaffected except for a slight elevation of VASP phosphorylation at Ser<sup>239</sup> on day 5.</p><p>Conclusion</p><p>After 5 days of storage in citrated WB, platelet responsiveness to TRAP-6 is sufficiently maintained. However, ADP-mediated platelet integrity is more sensitive to deterioration, especially after storage for more than 2 days. Decreasing ADP-induced aggregation is particularly caused by the impairment of the purinergic receptor P2Y1 activity. These characteristics should be considered in the use of platelets from stored citrated WB for experimental or therapeutic issues.</p></div
    corecore