414 research outputs found

    Estimating rainfall and water balance over the Okavango River Basin for hydrological applications

    Get PDF
    A historical database for use in rainfall-runoff modeling of the Okavango River Basin in Southwest Africa is presented. The work has relevance for similar data-sparse regions. The parameters of main concern are rainfall and catchment water balance which are key variables for subsequent studies of the hydrological impacts of development and climate change. Rainfall estimates are based on a combination of in-situ gauges and satellite sources. Rain gauge measurements are most extensive from 1955 to 1972, after which they are drastically reduced due to the Angolan civil war. The sensitivity of the rainfall fields to spatial interpolation techniques and the density of gauges was evaluated. Satellite based rainfall estimates for the basin are developed for the period from 1991 onwards, based on the Tropical Rainfall Measuring Mission (TRMM) and Special Sensor Microwave Imager (SSM/I) data sets. The consistency between the gauges and satellite estimates was considered. A methodology was developed to allow calibration of the rainfall-runoff hydrological model against rain gauge data from 1960-1972, with the prerequisite that the model should be driven by satellite derived rainfall products for the 1990s onwards. With the rain gauge data, addition of a single rainfall station (Longa) in regions where stations earlier were lacking was more important than the chosen interpolation method. Comparison of satellite and gauge rainfall outside the basin indicated that the satellite overestimates rainfall by 20%. A non-linear correction was derived used by fitting the rainfall frequency characteristics to those of the historical rainfall data. This satellite rainfall dataset was found satisfactory when using the Pitman rainfall-runoff model (Hughes et al., this issue). Intensive monitoring in the region is recommended to increase accuracy of the comprehensive satellite rainfall estimate calibration procedur

    A Comprehensive Stress Drop Map From Trench to Depth in the Northern Chilean Subduction Zone

    Get PDF
    We compute stress drops for earthquakes in Northern Chile recorded between 2007 and 2021. By applying two analysis techniques, (a) the spectral ratio (SR) method and (b) the spectral decomposition (SDC) method, a stress drop map for the subduction zone consisting of 51,510 stress drop values is produced. We build an extended set of empirical Green’s functions (EGF) for the SR method by systematic template matching. Outputs are used to compare with results from the SDC approach, where we apply cell-wise obtained global EGF's to compensate for the structural heterogeneity of the subduction zone. We find a good consistency of results of the two methods. The increased spatial coverage and quantity of stress drop estimates from the SDC method facilitate a consistent stress drop mapping of the different seismotectonic domains. Albeit only small differences of median stress drop, strike-perpendicular depth sections clearly reveal systematic variations, with earthquakes at different seismotectonic locations exhibiting distinct values. In particular, interface seismicity is characterized by the lowest observed median value, whereas upper plate earthquakes show noticeably higher stress drop values. Intermediate depth earthquakes show comparatively high average stress drop and a rather strong depth-dependent increase of median stress drop. Additionally, we observe spatio-temporal variability of stress drops related to the occurrence of the two megathrust earthquakes in the study region. The presented study is the first coherent large scale 3D stress drop mapping of the Northern Chilean subduction zone. It provides an important component for further detailed analysis of the physics of earthquake ruptures

    Global Precipitation Measurement: Evolution of Algorithms from TRMM to GPM

    Get PDF
    Topics include level 1C processing of Global Precipitation Measurement (GPM) Microwave Images (GMI) and intercalibration, radar-enhanced radiometer GPROF radiometer retrieval algorithm (radiometer-RE), combined radar-radiometer algorithms, and merged algorithm product

    Daily Precipitation over Southern Africa: A New Resource for Climate Studies

    Get PDF
    This paper describes a new high-resolution multiplatform multisensor satellite rainfall product for southern Africa covering the period 1993–2002. The microwave infrared rainfall algorithm (MIRA) employed to generate the rainfall estimates combines high spatial and temporal resolution Meteosat infrared data with infrequent Special Sensor Microwave Imager (SSM/I) overpasses. A transfer function relating Meteosat thermal infrared cloud brightness temperatures to SSM/I rainfall estimates is derived using collocated data from the two instruments and then applied to the full coverage of the Meteosat data. An extensive continental-scale validation against synoptic station data of both the daily MIRA precipitation product and a normalized geostationary IR-only Geostationary Operational Environmental Satellite (GOES) precipitation index (GPI) demonstrates a consistent advantage using the former over the latter for rain delineation. Potential uses for the resulting high-resolution daily rainfall dataset are discussed

    HOAPS precipitation validation with ship-borne rain gauge measurements over the Baltic Sea

    Get PDF
    Global ocean precipitation is an important part of the water cycle in the climate system. A number of efforts have been undertaken to acquire reliable estimates of precipitation over the oceans based on remote sensing and reanalysis modelling. However, validation of these data is still a challenging task, mainly due to a lack of suitable in situ measurements of precipitation over the oceans. In this study, validation of the satellite-based Hamburg Ocean Atmosphere Parameters and fluxes from Satellite data (HOAPS) climatology was conducted with in situ measurements by ship rain gauges over the Baltic Sea from 1995 to 1997. The ship rain gauge data are point-to-area collocated against the HOAPS data. By choosing suitable collocation parameters, a detection rate of up to about 70% is achieved. Investigation of the influence of the synoptic situation on the detectability shows that HOAPS performs better for stratiform than for convective precipitation. The number of collocated data is not sufficient to validate precipitation rates. Thus, precipitation rates were analysed by applying an interpolation scheme based on the Kriging method to both data sets. It was found that HOAPS underestimates precipitation by about 10%, taking into account that precipitation rates below 0.3 mm h−1 cannot be detected from satellite information

    A Detailed Examination of the GPM Core Satellite Gridded Text Product

    Get PDF
    The Global Precipitation Measurement (GPM) mission quarter-degree gridded-text product has a similar file format and a similar purpose as the Tropical Rainfall Measuring Mission (TRMM) 3G68 quarter-degree product. The GPM text-grid format is an hourly summary of surface precipitation retrievals from various GPM instruments and combinations of GPM instruments. The GMI Goddard Profiling (GPROF) retrieval provides the widest swath (800 km) and does the retrieval using the GPM Microwave Imager (GMI). The Ku radar provides the widest radar swath (250 km swath) and also provides continuity with the TRMM Ku Precipitation Radar. GPM's Ku+Ka band matched swath (125 km swath) provides a dual-frequency precipitation retrieval. The "combined" retrieval (125 km swath) provides a multi-instrument precipitation retrieval based on the GMI, the DPR Ku radar, and the DPR Ka radar. While the data are reported in hourly grids, all hours for a day are packaged into a single text file that is g-zipped to reduce file size and to speed up downloading. The data are reported on a 0.25deg x 0.25 deg grid

    The mitochondrial calcium uniporter regulates breast cancer progression via HIF-1α

    Get PDF
    Triple-negative breast cancer (TNBC) represents the most aggressive breast tumor subtype. However, the molecular determinants responsible for the metastatic TNBC phenotype are only partially understood. We here show that expression of the mitochondrial calcium uniporter (MCU), the selective channel responsible for mitochondrial Ca(2+) uptake, correlates with tumor size and lymph node infiltration, suggesting that mitochondrial Ca(2+) uptake might be instrumental for tumor growth and metastatic formation. Accordingly, MCU downregulation hampered cell motility and invasiveness and reduced tumor growth, lymph node infiltration, and lung metastasis in TNBC xenografts. In MCU-silenced cells, production of mitochondrial reactive oxygen species (mROS) is blunted and expression of the hypoxia-inducible factor-1α (HIF-1α) is reduced, suggesting a signaling role for mROS and HIF-1α, downstream of mitochondrial Ca(2+) Finally, in breast cancer mRNA samples, a positive correlation of MCU expression with HIF-1α signaling route is present. Our results indicate that MCU plays a central role in TNBC growth and metastasis formation and suggest that mitochondrial Ca(2+) uptake is a potential novel therapeutic target for clinical intervention

    GPROF V7 and beyond: assessment of current and potential future versions of the GPROF passive microwave precipitation retrievals against ground radar measurements over the continental US and the Pacific Ocean

    Get PDF
    The Goddard Profiling Algorithm (GPROF) is used operationally for the retrieval of surface precipitation and hydrometeor profiles from the passive microwave (PMW) observations of the Global Precipitation Measurement (GPM) mission. Recent updates have led to GPROF V7, which has entered operational use in May 2022. In parallel, development is underway to improve the retrieval by transitioning to a neural-network-based algorithm called GPROF-NN. This study validates retrievals of liquid precipitation over snow-free and non-mountainous surfaces from GPROF V7 and multiple configurations of GPROF-NN against ground-based radar measurements over the conterminous United States (CONUS) and the tropical Pacific. GPROF retrievals from the GPM Microwave Imager (GMI) are validated over several years, and their ability to reproduce regional precipitation characteristics and effective resolution is assessed. Moreover, the retrieval accuracy for several other sensors of the constellation is evaluated. The validation of GPROF V7 indicates that the retrieval produces reliable estimates of liquid precipitation over the CONUS. During all four assessed years, annual mean precipitation is within 8 % of gauge-corrected radar measurements. Although biases of up to 25 % are observed over sub-regions of the CONUS and the tropical Pacific, the retrieval reliably reproduces each region's diurnal and seasonal precipitation characteristics. The effective resolution of GPROF V7 is found to be 51 km over the CONUS and 18 km over the tropical Pacific. GPROF V7 also produces robust precipitation estimates for the other sensors of the GPM constellation. The evaluation further shows that the GPROF-NN retrievals have the potential to significantly improve the GPM PMW precipitation retrievals. GPROF-NN 1D, the most basic neural network implementation of GPROF, improves the mean-squared error, mean absolute error, correlation and symmetric mean absolute percentage error of instantaneous precipitation estimates by about 20 % for GPROF GMI while the effective resolution is improved to 31 km over land and 15 km over oceans. The two GPROF-NN retrievals that are based on convolutional neural networks can further improve the accuracy up to the level of the combined radar–radiometer retrievals from the GPM core observatory. However, these retrievals are found to overfit on the viewing geometry at the center of the swath, reducing their overall accuracy to that of GPROF-NN 1D. For the other sensors of the constellation, the GPROF-NN retrievals produce larger biases than GPROF V7 and only GPROF-NN 3D achieves consistent improvements compared to GPROF V7 in terms of the other assessed error metrics. This points to shortcomings in the hydrometeor profiles or radiative transfer simulations used to generate the training data for the other sensors of the GPM constellation as a critical limitation for improving GPM PMW retrievals.</p
    • …
    corecore