29 research outputs found

    Autotaxin activity predicts transplant-free survival in primary sclerosing cholangitis

    Get PDF
    Autotaxin has been associated with liver disease severity and transplant-free survival. This study aimed to validate autotaxin as a biomarker in two cohorts of Norwegian large-duct PSC patients, one discovery panel (n = 165) and one validation panel (n = 87). Serum activity of autotaxin was measured in diluted sera by a fluorometric enzymatic assay. Patients reaching an end-point, liver transplantation or death, (discovery panel: n = 118 [71.5%]; validation panel: n = 35 [40.2%]), showed higher autotaxin activity compared with the other patients, P < 0.001 and P = 0.004, respectively. Kaplan-Meier survival analyses showed a strong association between increasing autotaxin activity and shorter liver transplant-free survival (discovery panel: P < 0.001, validation panel: P = 0.001). There was no relationship between autotaxin activity and the presence of inflammatory bowel disease or occurrence of hepatobiliary malignancy. In a multivariable analysis, high autotaxin activity was associated with an increased risk of liver transplantation or death (hazard ratio 2.03 (95% confidence interval 1.21–3.40), P < 0.01), independent from Mayo risk score, an in-house enhanced liver fibrosis score and interleukin-8 in serum. In conclusion, increased serum autotaxin activity is associated with reduced liver transplant-free survival independent from Mayo risk score and markers of inflammation and fibrosis

    Guanylate cyclase C activation shapes the intestinal microbiota in patients with familial diarrhea and increased susceptibility for Crohn's Disease

    No full text
    Background: With 25% prevalence of Crohn's disease, Familial GUCY2C diarrhea syndrome (FGDS) is a monogenic disorder potentially suited to study initiating factors in inflammatory bowel disease (IBD). We aimed to characterize the impact of an activating GUCY2C mutation on the gut microbiota in patients with FGDS controlling for Crohn's disease status and to determine whether changes share features with those observed in unrelated patients with IBD. Methods: Bacterial DNA from fecal samples collected from patients with FGDS (N = 20), healthy relatives (N = 11), unrelated healthy individuals (N = 263), and IBD controls (N = 46) was subjected to sequencing of the V3-V4 region of the 16S rRNA gene to determine gut microbiota composition. Food frequency questionnaires were obtained from patients with FGDS and their relatives. Results: Compared with healthy controls, FGDS displayed prominent changes in many microbial lineages including increase in Enterobacteriaceae, loss of Bifidobacterium and Faecalibacterium prausnitzii but an unchanged intraindividual (alpha) diversity. The depletion of F. prausnitzii is in line with what is typically observed in Crohn's disease. There was no significant difference in the dietary profile between the patients and related controls. The gut microbiota in related and unrelated healthy controls was also similar, suggesting that diet and familial factors do not explain the gut microbiota alterations in FGDS. Conclusions: The findings support that the activating mutation in GUCY2C creates an intestinal environment with a major influence on the microbiota, which could contribute to the increased susceptibility to IBD in patients with FGDS

    The gut microbiota contributes to a mouse model of spontaneous bile duct inflammation

    No full text
    Background & Aims A strong association between human inflammatory biliary diseases and gut inflammation has led to the hypothesis that gut microbes and lymphocytes activated in the intestine play a role in biliary inflammation. The NOD.c3c4 mouse model develops spontaneous biliary inflammation in extra- and intra-hepatic bile ducts. We aimed to clarify the role of the gut microbiota in the biliary disease of NOD.c3c4 mice. Methods We sampled cecal content and mucosa from conventionally raised (CONV-R) NOD.c3c4 and NOD control mice, extracted DNA and performed 16S rRNA sequencing. NOD.c3c4 mice were rederived into a germ free (GF) facility and compared with CONV-R NOD.c3c4 mice. NOD.c3c4 mice were also co-housed with NOD mice and received antibiotics from weaning. Results The gut microbial profiles of mice with and without biliary disease were different both before and after rederivation (unweighted UniFrac-distance). GF NOD.c3c4 mice had less distended extra-hepatic bile ducts than CONV-R NOD.c3c4 mice, while antibiotic treated mice showed reduction of biliary infarcts. GF animals also showed a reduction in liver weight compared with CONV-R NOD.c3c4 mice, and this was also observed in antibiotic treated NOD.c3c4 mice. Co-housing of NOD and NOD.c3c4 mice indicated that the biliary phenotype was neither transmissible nor treatable by co-housing with healthy mice. Conclusions NOD.c3c4 and NOD control mice show marked differences in the gut microbiota. Germ free NOD.c3c4 mice develop a milder biliary affection compared with conventionally raised NOD.c3c4 mice. Our findings suggest that the intestinal microbiota contributes to disease in this murine model of biliary inflammation. Lay Summary Mice with liver disease have a gut microflora (microbiota) that differs substantially from normal mice. When these mice, that under normal circumstances spontaneously develops disease in their bile ducts, are raised in an environment devoid of bacteria, the disease in the bile ducts diminishes. Overall this clearly indicates that the bacteria in the gut (the gut microbiota) influences the liver disease in these mice

    The gut microbial profile in patients with primary sclerosing cholangitis is distinct from patients with ulcerative colitis without biliary disease and healthy controls

    No full text
    Objective Gut microbiota could influence gut, as well as hepatic and biliary immune responses. We therefore thoroughly characterised the gut microbiota in primary sclerosing cholangitis (PSC) compared with healthy controls (HC) and patients with ulcerative colitis without liver disease. Design We prospectively collected 543 stool samples. After a stringent exclusion process, bacterial DNA was submitted for 16S rRNA gene sequencing. PSC and HC were randomised to an exploration panel or a validation panel, and only significant results (p<0.05, QFDR<0.20) in both panels were reported, followed by a combined comparison of all samples against UC. Results Patients with PSC (N=85) had markedly reduced bacterial diversity compared with HC (N=263, p<0.0001), and a different global microbial composition compared with both HC (p<0.001) and UC (N=36, p<0.01). The microbiota of patients with PSC with and without IBD was similar. Twelve genera separated PSC and HC, out of which 11 were reduced in PSC. However, the Veillonella genus showed a marked increase in PSC compared with both HC (p<0.0001) and UC (p<0.02). Using receiver operating characteristic analysis, Veillonella abundance yielded an area under the curve (AUC) of 0.64 to discriminate PSC from HC, while a combination of PSC-associated genera yielded an AUC of 0.78. Conclusions Patients with PSC exhibited a gut microbial signature distinct from both HC and UC without liver disease, but similar in PSC with and without IBD. The Veillonella genus, which is also associated with other chronic inflammatory and fibrotic conditions, was enriched in PSC
    corecore