21 research outputs found

    Chromone derivatives and other constituents from cultures of the marine sponge-associated fungus penicillium erubescens KUFA0220 and their antibacterial activity

    Get PDF
    A previously unreported chromene derivative, 1-hydroxy-12-methoxycitromycin (1c), and four previously undescribed chromone derivatives, including pyanochromone (3b), spirofuranochromone (4), 7-hydroxy-6-methoxy-4-oxo-3-[(1E)-3-oxobut-1-en-1-yl]-4H-chromene-5-carboxylic acid (5), a pyranochromone dimer (6) were isolated, together with thirteen known compounds: ÎČ-sitostenone, ergosterol 5,8-endoperoxide, citromycin (1a), 12-methoxycitromycin (1b), myxotrichin D (1d), 12-methoxycitromycetin (1e), anhydrofulvic acid (2a), myxotrichin C (2b), penialidin D (2c), penialidin F (3a), SPF-3059-30 (7), GKK1032B (8) and secalonic acid A (9), from cultures of the marine sponge- associated fungus Penicillium erubescens KUFA0220. Compounds 1a-e, 2a, 3a, 4, 7-9, were tested for their antibacterial activity against Gram-positive and Gram-negative reference and multidrug-resistant strains isolated from the environment. Only 8 exhibited an in vitro growth inhibition of all Gram-positive bacteria whereas 9 showed growth inhibition of methicillin-resistant Staphyllococus aureus (MRSA). None of the compounds were active against Gram-negative bacteria tested. © 2018 MDPI. All Rights Reserved.Funding: This research was funded by Fundação para a CiĂȘncias e Tecnologia (FCT) (grant number POCI-01-0145-FEDER-016790) and North Portugal Regional Operational Programme (NORTE 2020)(grant number NORTE-01-0145-FEDER-000035). Acknowledgments: This work was partially supported through national funds provided by FCT/MCTES-Foundation for Science and Technology from the Minister of Science, Technology and Higher Education (PIDDAC) and European Regional Development Fund (ERDF) through the COMPETE—Programa Operacional Factores de Competitividade (POFC) programme, under the project PTDC/MAR-BIO/4694/2014 (reference POCI-01-0145-FEDER-016790; Project 3599-Promover a Produção CientĂ­fica e Desenvolvimento TecnolĂłgico e a Constituição de Redes TemĂĄticas (3599-PPCDT)) in the framework of the programme PT2020 as well as by the project INNOVMAR-Innovation and Sustainability in the Management and Exploitation of Marine Resources (reference NORTE-01-0145-FEDER-000035, within Research Line NOVELMAR), supported by North Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). Decha Kumla thanks the Alfabet Project of the Erasmus Mundus for a PhD’s scholarship. We thank JĂșlia Bessa and Sara Cravo for technical support

    Fungal diversity notes 1512-1610: taxonomic and phylogenetic contributions on genera and species of fungal taxa

    Get PDF
    This article is the 14th in the Fungal Diversity Notes series, wherein we report 98 taxa distributed in two phyla, seven classes, 26 orders and 50 families which are described and illustrated. Taxa in this study were collected from Australia, Brazil, Burkina Faso, Chile, China, Cyprus, Egypt, France, French Guiana, India, Indonesia, Italy, Laos, Mexico, Russia, Sri Lanka, Thailand, and Vietnam. There are 59 new taxa, 39 new hosts and new geographical distributions with one new combination. The 59 new species comprise Angustimassarina kunmingense, Asterina lopi, Asterina brigadeirensis, Bartalinia bidenticola, Bartalinia caryotae, Buellia pruinocalcarea, Coltricia insularis, Colletotrichum flexuosum, Colletotrichum thasutense, Coniochaeta caraganae, Coniothyrium yuccicola, Dematipyriforma aquatic, Dematipyriforma globispora, Dematipyriforma nilotica, Distoseptispora bambusicola, Fulvifomes jawadhuvensis, Fulvifomes malaiyanurensis, Fulvifomes thiruvannamalaiensis, Fusarium purpurea, Gerronema atrovirens, Gerronema flavum, Gerronema keralense, Gerronema kuruvense, Grammothele taiwanensis, Hongkongmyces changchunensis, Hypoxylon inaequale, Kirschsteiniothelia acutisporum, Kirschsteiniothelia crustaceum, Kirschsteiniothelia extensum, Kirschsteiniothelia septemseptatum, Kirschsteiniothelia spatiosum, Lecanora immersocalcarea, Lepiota subthailandica, Lindgomyces guizhouensis, Marthe asmius pallidoaurantiacus, Marasmius tangerinus, Neovaginatispora mangiferae, Pararamichloridium aquisubtropicum, Pestalotiopsis piraubensis, Phacidium chinaum, Phaeoisaria goiasensis, Phaeoseptum thailandicum, Pleurothecium aquisubtropicum, Pseudocercospora vernoniae, Pyrenophora verruculosa, Rhachomyces cruralis, Rhachomyces hyperommae, Rhachomyces magrinii, Rhachomyces platyprosophi, Rhizomarasmius cunninghamietorum, Skeletocutis cangshanensis, Skeletocutis subchrysella, Sporisorium anadelphiae-leptocomae, Tetraploa dashaoensis, Tomentella exiguelata, Tomentella fuscoaraneosa, Tricholomopsis lechatii, Vaginatispora flavispora and Wetmoreana blastidiocalcarea. The new combination is Torula sundara. The 39 new records on hosts and geographical distribution comprise Apiospora guiyangensis, Aplosporella artocarpi, Ascochyta medicaginicola, Astrocystis bambusicola, Athelia rolfsii, Bambusicola bambusae, Bipolaris luttrellii, Botryosphaeria dothidea, Chlorophyllum squamulosum, Colletotrichum aeschynomenes, Colletotrichum pandanicola, Coprinopsis cinerea, Corylicola italica, Curvularia alcornii, Curvularia senegalensis, Diaporthe foeniculina, Diaporthe longicolla, Diaporthe phaseolorum, Diatrypella quercina, Fusarium brachygibbosum, Helicoma aquaticum, Lepiota metulispora, Lepiota pongduadensis, Lepiota subvenenata, Melanconiella meridionalis, Monotosporella erecta, Nodulosphaeria digitalis, Palmiascoma gregariascomum, Periconia byssoides, Periconia cortaderiae, Pleopunctum ellipsoideum, Psilocybe keralensis, Scedosporium apiospermum, Scedosporium dehoogii, Scedosporium marina, Spegazzinia deightonii, Torula fici, Wiesneriomyces laurinus and Xylaria venosula. All these taxa are supported by morphological and multigene phylogenetic analyses. This article allows the researchers to publish fungal collections which are important for future studies. An updated, accurate and timely report of fungus-host and fungus-geography is important. We also provide an updated list of fungal taxa published in the previous fungal diversity notes. In this list, erroneous taxa and synonyms are marked and corrected accordingly

    Bioactive compounds content and their biological properties of acetone extract of <i>Cuscuta reflexa</i> Roxb. grown on various host plants

    No full text
    <p>The present study is aimed to evaluate the total phenolic and flavonoid contents, and free phenolic compounds of acetone extract of <i>Cuscuta reflexa</i> grown on five different hosts: <i>Coccinia grandis</i>, <i>Ficus racemosa</i>, <i>Samanea saman</i>, <i>Streblus asper</i> and <i>Zollingeria dongnaiensis</i>, and to explore the antioxidant activities, α-glucosidase and tyrosinase inhibitory properties of the extracts. The highest level of total phenolic and flavonoid contents were observed in the extract of <i>C. reflexa</i> that was grown on <i>S. asper</i> (65.45 mg GAE/g extract) and <i>C. grandis</i> (97.83 mg QE/g extract), respectively. According to HPLC results, vanillic acid, rutin and quercetin were found in all extracts of <i>C. reflexa</i> grown on diversified hosts. The extract of <i>C. reflexa</i> grown on <i>C. grandis</i> possessed the greatest antioxidant activities (DPPH; 251.64 Όg/mL, FRAP; 26.44 mg GAE/g extract), α-glucosidase inhibition accounted for 84.36 per cent and antityrosinase activity was at 18.29 mg KAE/g sample.</p

    Identification and Pathogenicity of Paramyrothecium Species Associated with Leaf Spot Disease in Northern Thailand

    No full text
    Species of Paramyrothecium that are reported as plant pathogens and cause leaf spot or leaf blight have been reported on many commercial crops worldwide. In 2019, during a survey of fungi causing leaf spots on plants in Chiang Mai and Mae Hong Son provinces, northern Thailand, 16 isolates from 14 host species across nine plant families were collected. A new species Paramyrothecium vignicola sp. nov. was identified based on morphology and concatenated (ITS, cmdA, rpb2, and tub2) phylogeny. Further, P. breviseta and P. foliicola represented novel geographic records to Thailand, while P. eichhorniae represented a novel host record (Psophocarpus sp., Centrosema sp., Aristolochia sp.). These species were confirmed to be the causal agents of the leaf spot disease through pathogenicity assay. Furthermore, cross pathogenicity tests on Coffea arabica L., Commelina benghalensis L., Glycine max (L.) Merr., and Dieffenbachia seguine (Jacq.) Schott revealed multiple host ranges for these pathogens. Further research is required into the host&ndash;pathogen relationship of Paramyrothecium species that cause leaf spot and their management. Biotic and abiotic stresses caused by climate change may affect plant health and disease susceptibility. Hence, proper identification and monitoring of fungal communities in the environment are important to understand emerging diseases and for implementation of disease management strategies

    Outline of Fungi and fungus-like taxa – 2021

    Get PDF
    This paper provides an updated classification of the Kingdom Fungi (including fossil fungi) and fungus-like taxa. Five-hundred and twenty-three (535) notes are provided for newly introduced taxa and for changes that have been made since the previous outline. In the discussion, the latest taxonomic changes in Basidiomycota are provided and the classification of Mycosphaerellales are broadly discussed. Genera listed in Mycosphaerellaceae have been confirmed by DNA sequence analyses, while doubtful genera (DNA sequences being unavailable but traditionally accommodated in Mycosphaerellaceae) are listed in the discussion. Problematic genera in Glomeromycota are also discussed based on phylogenetic results

    Outline of Fungi and fungus-like taxa - 2021.

    No full text
    This paper provides an updated classification of the Kingdom Fungi (including fossil fungi) and fungus-like taxa. Five-hundred and twenty-three (535) notes are provided for newly introduced taxa and for changes that have been made since the previous outline. In the discussion, the latest taxonomic changes in Basidiomycota are provided and the classification of Mycosphaerellales are broadly discussed. Genera listed in Mycosphaerellaceae have been confirmed by DNA sequence analyses, while doubtful genera (DNA sequences being unavailable but traditionally accommodated in Mycosphaerellaceae) are listed in the discussion. Problematic genera in Glomeromycota are also discussed based on phylogenetic results
    corecore