2,326 research outputs found

    Impact of Biofield Energy Treatment on Soil Fertility

    Get PDF
    Measurement of soil components such as microbial population, minerals and obviously the content of organic carbon play the important roles for the productivity of crops and plants. The present study was attempted to evaluate the impact of Mr. Trivedi’s biofield energy treatment on soil for its physical (electrical conductivity), chemical (minerals) and microbial flora (bacteria and fungi). A plot of lands was assigned for this study with some already grown plants. This plot was divided into two parts. One part was considered as control, while another part was subjected to Mr. Trivedi’s biofield energy treatment without physically touching and referred as treated. In the treated soil the total bacterial and fungal counts were increased by 546 and 617%, respectively as compared to the untreated soil. Additionally, the conductivity of soil of the treated plot was increased by 79% as compared to the soil of control plot. Apart from microbes, the content of various minerals were also changed in the biofield energy treated soil. The calcium carbonate content showed 2909 ppm in the control, while in the treated soil it was increased to 3943 ppm i.e. 36% increased. Various other minerals such as nitrogen and potassium were increased by 12% and 7%, respectively as compared to the control. Besides, the level of some minerals such as potassium, iron, and chloride were decreased by 9%, 23%, and 41%, respectively as compared to the control. Apart from chemical constituents of soil, the content of organic carbon was also reduced by 8% in the treated soil as compared to the control soil. The overall results envisaged that the biofield energy treatment on the soil showed a significant improvement in the physical, chemical, and microbial functions of soil component. Thus, improved the conductance, supportive microbes, minerals and overall productivity of crops. In conclusion, the biofield energy treatment could be used as an alternative way to increase the yield of quality crops by increasing soil fertility

    Finite energy spin fluctuation as a pairing glue in systems with coexisting electron and hole bands

    Full text link
    We study, within the fluctuation exchange approximation, the spin-fluctuation-mediated superconductivity in Hubbard-type models possessing electron and hole bands, and compare them with a model on a square lattice with a large Fermi surface. In the square lattice model, superconductivity is more enhanced for better nesting for a fixed band filling. By contrast, in the models with electron and hole bands, superconductivity is optimized when the Fermi surface nesting is degraded to some extent, where finite energy spin fluctuation around the nesting vector develops. The difference lies in the robustness of the nesting vector, namely, in models with electron and hole bands, the wave vector at which the spin susceptibility is maximized is fixed even when the nesting is degraded, whereas when the Fermi surface is large, the nesting vector varies with the deformation of the Fermi surface. We also discuss the possibility of realizing in actual materials the bilayer Hubbard model, which is a simple model with electron and hole bands, and is expected to have a very high T_c

    Facile preparation of agarose-chitosan hybrid materials and nanocomposite ionogels using an ionic liquid via dissolution, regeneration and sol-gel transition

    Get PDF
    We report simultaneous dissolution of agarose (AG) and chitosan (CH) in varying proportions in an ionic liquid (IL), 1-butyl-3-methylimidazolium chloride [C4mim][Cl]. Composite materials were constructed from AG-CH-IL solutions using the antisolvent methanol, and IL was recovered from the solutions. Composite materials could be uniformly decorated with silver oxide (Ag2O) nanoparticles (Ag NPs) to form nanocomposites in a single step by in situ synthesis of Ag NPs in AG-CH-IL sols, wherein the biopolymer moiety acted as both reducing and stabilizing agent. Cooling of Ag NPs-AG-CH-IL sols to room temperature resulted in high conductivity and high mechanical strength nanocomposite ionogels. The structure, stability and physiochemical properties of composite materials and nanocomposites were characterized by several analytical techniques, such as Fourier transform infrared (FTIR), CD spectroscopy, differential scanning colorimetric (DSC), thermogravimetric analysis (TGA), gel permeation chromatography (GPC), and scanning electron micrography (SEM). The result shows that composite materials have good thermal and conformational stability, compatibility and strong hydrogen bonding interactions between AG-CH complexes. Decoration of Ag NPs in composites and ionogels was confirmed by UV-Vis spectroscopy, SEM, TEM, EDAX and XRD. The mechanical and conducting properties of composite ionogels have been characterized by rheology and current-voltage measurements. Since Ag NPs show good antimicrobial activity, Ag NPs -AG-CH composite materials have the potential to be used in biotechnology and biomedical applications whereas nanocomposite ionogels will be suitable as precursors for applications such as quasi-solid dye sensitized solar cells, actuators, sensors or electrochromic displays

    Designing a reusable class cluster: a hypertext cluster

    Get PDF
    This thesis is a contribution to the study of object-oriented software engineering, focusing upon the reuse-approach to build reliable and extendable software. A hypertext system has been developed to study the reuse. The ET++ and MacApp framework class libraries provide standard components that can be re-used to develop application-specific programs. A plug-compatible design is presented in this work; this design approach facilitates building applications that work with frameworks based on similar principles running on different platforms. Hypertext is chosen as an example domain for designing class clusters, while ET++ and MacApp are selected as frameworks. A survey of reuse and hypertext is done at various levels. The hypertext specific classes are designed, keeping the commonalities in mind to provide adequate generalization. These classes are implemented on the ET++ and MacApp frameworks. There are variations in the two implementations, but overall design of the classes remains the same. The design is validated by testing it against the changing requirements of the system and adding new functionality to the system. The effectiveness of the plug-compatible approach is explored
    • …
    corecore