1,549 research outputs found

    Automated Detection of Retinal Hemorrhage based on Supervised Classifiers

    Get PDF
    Supervised machine learning algorithm based retinal hemorrhage detection and classification is presented. For developing an automated diabetic retinopathy screening system, efficient detection of retinal hemorrhage is important. Splat, which is a high level entity in image segmentation is used to mark out hemorrhage in the pre-processed fundus image. Here, color images of retina are portioned into different segments (splats) covereing the whole image. With the help of splat level and GLCM features extracted from the splats, three classifiers are trained and tested using the relevant features. The ground-truth is established with the help of a retinal expert and using dataset and clinical images the validation was done. The output obtained using the three classifiers had more than 96 % sensitivity and accuracy

    Simultaneous solutions for first order and second order slips on micropolar fluid flow across a convective surface in the presence of Lorentz force and variable heat source/sink

    Get PDF
    This report presents the flow and heat transfer characteristics of MHD micropolar fluid due to the stretching of a surface with second order velocity slip. The influence of nonlinear radiation and irregular heat source/sink are anticipated. Simultaneous solutions are presented for first and second-order velocity slips. The PDEs which govern the flow have been transformed as ODEs by the choice of suitable similarity transformations. The transformed nonlinear ODEs are converted into linear by shooting method then solved numerically by fourth-order Runge-Kutta method. Graphs are drowned to discern the effect of varied nondimensional parameters on the flow fields (velocity, microrotation, and temperature). Along with them the coefficients of Skin friction, couple stress, and local Nussel number are also anticipated and portrayed with the support of the table. The results unveil that the non-uniform heat source/sink and non-linear radiation parameters plays a key role in the heat transfer performance. Also, second-order slip velocity causes strengthen in the distribution of velocity but a reduction in the distribution of temperature is perceived. - 2019, The Author(s).Scopu

    Impact of continuous mechanical harvesting on leaf leatheriness and possible alleviation measures

    Get PDF
    Mechanization in plucking has become imperative to improve the profitability and efficiency in tea industry. Continuous shear harvesting of tea shoots creates a stress on plant thereby changing the texture of the crop shoots termed as “leaf leatheriness”. Objective of the study was to generate data on the formation of leaf leatheriness due to continuous shear harvesting and to propose the remedial measures. A factorial block design experiment was conducted with a ‘Chinery’ clone UPASI-9. Results indicated that continuous shear harvesting for a period of six months resulted in the accumulation of total wax content when compared to the hand plucked crop shoots which contributed to the leatheriness of crop shoots. Significant increase in the banji content in the harvest was also noticed due to continuous shear harvesting. Foliar applied chemicals influenced the reduction in banji shoots in the shear harvested treatments. Among the foliar applied treatments, reduction in the total wax content in the continuously shear harvested plots was obtained by the foliar application of KNO3 (2%) + Urea (1%) followed by KNO3 (2%) and Ca(NO3)2 (2%) when compared with control. Study concluded that foliar application of KNO3 (2%) alone or in combination with Urea (1%) is beneficial in alleviating the leaf leatheriness caused due to continuous shear harvesting without deterioration of quality characteristics with a prophylactic effect to improve the yield of tea plants

    Landmark-based morphometric and meristic variations of endangered mrigal carp, Cirrhinus cirrhosus (Bloch 1795), from wild and hatchery stocks

    Get PDF
    Wild stocks of endangered mrigal carp, Cirrhinus cirrhosus (Bloch 1795), continues to decline rapidly in the Indo-Ganges river basin. With an objective to evaluate its population status, landmark-based morphometric and meristic variations among three different stocks viz., hatchery (Jessore), baor (Gopalganj) and river (Faridpur) in Bangladesh were studied. Significant differences were observed in 10 of the 15 morphometric measurements viz., head length, standard length, fork length, length of base of spinous, pre-orbital length, eye length, post-orbital length, length of upper jaw, height of pelvic fin and barbel length, two of the 8 meristic counts viz., scales above the lateral line and pectoral fin rays and 10 of the 22 truss network measurements viz., 1 to 10, 2 to 3, 2 to 8, 2 to 9, 2 to 10, 3 to 4, 3 to 8, 4 to 5, 4 to 7 and 9 to 10 among the stocks. For morphometric and landmark measurements, the 1st discriminant function (DF) accounted for 58.1% and the 2nd DF accounted for 41.9% of the among-group variability. In discriminant space, the river stock was isolated from the other two stocks. On the other hand, baor and hatchery stocks formed a very compact cluster. A dendrogram based on the hierarchical cluster analysis using morphometric and truss distance data placed the hatchery and baor in one cluster and the river in another cluster and the distance between the river and hatchery populations was the highest. Morphological differences among stocks are expected, because of their geographical isolation and their origin from different ancestors. The baseline information derived from the present study would be useful for genetic studies and in the assessment of environmental impacts on C. cirrhosus populations in Bangladesh

    Quantum Tunneling, Blackbody Spectrum and Non-Logarithmic Entropy Correction for Lovelock Black Holes

    Full text link
    We show, using the tunneling method, that Lovelock black holes Hawking radiate with a perfect blackbody spectrum. This is a new result. Within the semiclassical (WKB) approximation the temperature of the spectrum is given by the semiclassical Hawking temperature. Beyond the semiclassical approximation the thermal nature of the spectrum does not change but the temperature undergoes some higher order corrections. This is true for both black hole (event) and cosmological horizons. Using the first law of thermodynamics the black hole entropy is calculated. Specifically the DD-dimensional static, chargeless black hole solutions which are spherically symmetric and asymptotically flat, AdS or dS are considered. The interesting property of these black holes is that their semiclassical entropy does not obey the Bekenstein-Hawking area law. It is found that the leading correction to the semiclassical entropy for these black holes is not logarithmic and next to leading correction is also not inverse of horizon area. This is in contrast to the black holes in Einstein gravity. The modified result is due to the presence of Gauss-Bonnet term in the Lovelock Lagrangian. For the limit where the coupling constant of the Gauss-Bonnet term vanishes one recovers the known correctional terms as expected in Einstein gravity. Finally we relate the coefficient of the leading (non-logarithmic) correction with the trace anomaly of the stress tensor.Comment: minor modifications, two new references added, LaTeX, JHEP style, 34 pages, no figures, to appear in JHE
    corecore