304 research outputs found

    Potential conservation of circadian clock proteins in the phylum Nematoda as revealed by bioinformatic searches

    Get PDF
    Although several circadian rhythms have been described in C. elegans, its molecular clock remains elusive. In this work we employed a novel bioinformatic approach, applying probabilistic methodologies, to search for circadian clock proteins of several of the best studied circadian model organisms of different taxa (Mus musculus, Drosophila melanogaster, Neurospora crassa, Arabidopsis thaliana and Synechoccocus elongatus) in the proteomes of C. elegans and other members of the phylum Nematoda. With this approach we found that the Nematoda contain proteins most related to the core and accessory proteins of the insect and mammalian clocks, which provide new insights into the nematode clock and the evolution of the circadian system.Fil: Romanowski, Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Cronobiología; ArgentinaFil: Garavaglia, Matías Javier. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Ing.genética y Biolog.molecular y Celular. Area Virus de Insectos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Goya, María Eugenia. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Cronobiología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ghiringhelli, Pablo Daniel. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Ing.genética y Biolog.molecular y Celular. Area Virus de Insectos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Golombek, Diego Andres. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Cronobiología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Use of Recombinant Adenovirus Vectored Consensus IFN-α to Avert Severe Arenavirus Infection

    Get PDF
    Several arenaviruses can cause viral hemorrhagic fever, a severe disease with case-fatality rates in hospitalized individuals ranging from 15-30%. Because of limited prophylaxis and treatment options, new medical countermeasures are needed for these viruses classified by the National Institutes of Allergy and Infectious Diseases (NIAID) as top priority biodefense Category A pathogens. Recombinant consensus interferon alpha (cIFN-α) is a licensed protein with broad clinical appeal. However, while cIFN-α has great therapeutic value, its utility for biodefense applications is hindered by its short in vivo half-life, mode and frequency of administration, and costly production. To address these limitations, we describe the use of DEF201, a replication-deficient adenovirus vector that drives the expression of cIFN-α, for pre- and post-exposure prophylaxis of acute arenaviral infection modeled in hamsters. Intranasal administration of DEF201 24 h prior to challenge with Pichindé virus (PICV) was highly effective at protecting animals from mortality and preventing viral replication and liver-associated disease. A significant protective effect was still observed with a single dosing of DEF201 given two weeks prior to PICV challenge. DEF201 was also efficacious when administered as a treatment 24 to 48 h post-virus exposure. The protective effect of DEF201 was largely attributed to the expression of cIFN-α, as dosing with a control empty vector adenovirus did not protect hamsters from lethal PICV challenge. Effective countermeasures that are highly stable, easily administered, and elicit long lasting protective immunity are much needed for arena and other viral infections. The DEF201 technology has the potential to address all of these issues and may serve as a broad-spectrum antiviral to enhance host defense against a number of viral pathogens

    Derepression of the Plant Chromovirus LORE1 Induces Germline Transposition in Regenerated Plants

    Get PDF
    Transposable elements represent a large proportion of the eukaryotic genomes. Long Terminal Repeat (LTR) retrotransposons are very abundant and constitute the predominant family of transposable elements in plants. Recent studies have identified chromoviruses to be a widely distributed lineage of Gypsy elements. These elements contain chromodomains in their integrases, which suggests a preference for insertion into heterochromatin. In turn, this preference might have contributed to the patterning of heterochromatin observed in host genomes. Despite their potential importance for our understanding of plant genome dynamics and evolution, the regulatory mechanisms governing the behavior of chromoviruses and their activities remain largely uncharacterized. Here, we report a detailed analysis of the spatio-temporal activity of a plant chromovirus in the endogenous host. We examined LORE1a, a member of the endogenous chromovirus LORE1 family from the model legume Lotus japonicus. We found that this chromovirus is stochastically de-repressed in plant populations regenerated from de-differentiated cells and that LORE1a transposes in the male germline. Bisulfite sequencing of the 5′ LTR and its surrounding region suggests that tissue culture induces a loss of epigenetic silencing of LORE1a. Since LTR promoter activity is pollen specific, as shown by the analysis of transgenic plants containing an LTR::GUS fusion, we conclude that male germline-specific LORE1a transposition in pollen grains is controlled transcriptionally by its own cis-elements. New insertion sites of LORE1a copies were frequently found in genic regions and show no strong insertional preferences. These distinctive novel features of LORE1 indicate that this chromovirus has considerable potential for generating genetic and epigenetic diversity in the host plant population. Our results also define conditions for the use of LORE1a as a genetic tool

    Development of a Multi-Step Leukemogenesis Model of MLL-Rearranged Leukemia Using Humanized Mice

    Get PDF
    Mixed-lineage-leukemia (MLL) fusion oncogenes are intimately involved in acute leukemia and secondary therapy-related acute leukemia. To understand MLL-rearranged leukemia, several murine models for this disease have been established. However, the mouse leukemia derived from mouse hematopoietic stem cells (HSCs) may not be fully comparable with human leukemia. Here we developed a humanized mouse model for human leukemia by transplanting human cord blood-derived HSCs transduced with an MLL-AF10 oncogene into a supra-immunodeficient mouse strain, NOD/Shi-scid, IL-2Rγ−/− (NOG) mice. Injection of the MLL-AF10-transduced HSCs into the liver of NOG mice enhanced multilineage hematopoiesis, but did not induce leukemia. Because active mutations in ras genes are often found in MLL-related leukemia, we next transduced the gene for a constitutively active form of K-ras along with the MLL-AF10 oncogene. Eight weeks after transplantation, all the recipient mice had developed acute monoblastic leukemia (the M5 phenotype in French-American-British classification). We thus successfully established a human MLL-rearranged leukemia that was derived in vivo from human HSCs. In addition, since the enforced expression of the mutant K-ras alone was insufficient to induce leukemia, the present model may also be a useful experimental platform for the multi-step leukemogenesis model of human leukemia

    DNA Methylation Dynamics in Human Induced Pluripotent Stem Cells over Time

    Get PDF
    Epigenetic reprogramming is a critical event in the generation of induced pluripotent stem cells (iPSCs). Here, we determined the DNA methylation profiles of 22 human iPSC lines derived from five different cell types (human endometrium, placental artery endothelium, amnion, fetal lung fibroblast, and menstrual blood cell) and five human embryonic stem cell (ESC) lines, and we followed the aberrant methylation sites in iPSCs for up to 42 weeks. The iPSCs exhibited distinct epigenetic differences from ESCs, which were caused by aberrant methylation at early passages. Multiple appearances and then disappearances of random aberrant methylation were detected throughout iPSC reprogramming. Continuous passaging of the iPSCs diminished the differences between iPSCs and ESCs, implying that iPSCs lose the characteristics inherited from the parent cells and adapt to very closely resemble ESCs over time. Human iPSCs were gradually reprogrammed through the “convergence” of aberrant hyper-methylation events that continuously appeared in a de novo manner. This iPS reprogramming consisted of stochastic de novo methylation and selection/fixation of methylation in an environment suitable for ESCs. Taken together, random methylation and convergence are driving forces for long-term reprogramming of iPSCs to ESCs

    Contribution of Intragenic DNA Methylation in Mouse Gametic DNA Methylomes to Establish Oocyte-Specific Heritable Marks

    Get PDF
    Genome-wide dynamic changes in DNA methylation are indispensable for germline development and genomic imprinting in mammals. Here, we report single-base resolution DNA methylome and transcriptome maps of mouse germ cells, generated using whole-genome shotgun bisulfite sequencing and cDNA sequencing (mRNA-seq). Oocyte genomes showed a significant positive correlation between mRNA transcript levels and methylation of the transcribed region. Sperm genomes had nearly complete coverage of methylation, except in the CpG-rich regions, and showed a significant negative correlation between gene expression and promoter methylation. Thus, these methylome maps revealed that oocytes and sperms are widely different in the extent and distribution of DNA methylation. Furthermore, a comparison of oocyte and sperm methylomes identified more than 1,600 CpG islands differentially methylated in oocytes and sperm (germline differentially methylated regions, gDMRs), in addition to the known imprinting control regions (ICRs). About half of these differentially methylated DNA sequences appear to be at least partially resistant to the global DNA demethylation that occurs during preimplantation development. In the absence of Dnmt3L, neither methylation of most oocyte-methylated gDMRs nor intragenic methylation was observed. There was also genome-wide hypomethylation, and partial methylation at particular retrotransposons, while maintaining global gene expression, in oocytes. Along with the identification of the many Dnmt3L-dependent gDMRs at intragenic regions, the present results suggest that oocyte methylation can be divided into 2 types: Dnmt3L-dependent methylation, which is required for maternal methylation imprinting, and Dnmt3L-independent methylation, which might be essential for endogenous retroviral DNA silencing. The present data provide entirely new perspectives on the evaluation of epigenetic markers in germline cells

    Amplification of telomerase (hTERT) gene is a poor prognostic marker in non-small-cell lung cancer

    Get PDF
    Telomerase reactivation is a hallmark of human carcinogenesis. Increased telomerase activity may result from gene amplification and/or overexpression. This study evaluates the prognostic value of hTERT gene amplification and mRNA overexpression in 144 resectable non-small-cell lung cancer (NSCLC) specimens. The hTERT gene copy number was assessed by quantitative polymerase chain reaction (qPCR) on laser-capture microdissected tumour cells of 81 tumours, and by fluorescence in situ hybridisation (FISH) on a subset of 59 tumours. hTERT mRNA level was determined by reverse transcription (RT)–qPCR in 130 tumours. In total, 57% of (46 out of 81) primary NSCLC specimens demonstrated hTERT amplification, which was significantly more common (P<0.001) in adenocarcinoma (30 out of 40) than in squamous cell carcinoma (13 out of 37). The hTERT mRNA overexpression was noted in 74% (94 out of 130) of tumours; it was more frequent in squamous cell than in adenocarcinoma (87 vs 68%, P=0.03). Overexpression was significantly associated with amplification (P=0.03), especially in adenocarcinoma. The hTERT gene amplification was prognostic for shorter recurrence-free survival (hazard ratio=2.16, P=0.03). These data indicate that gene amplification is an important mechanism for hTERT overexpression in lung adenocarcinoma and is an independent poor prognostic marker for disease-free survival in NSCLC

    Genome-Wide and Phase-Specific DNA-Binding Rhythms of BMAL1 Control Circadian Output Functions in Mouse Liver

    Get PDF
    Temporal mapping during a circadian day of binding sites for the BMAL1 transcription factor in mouse liver reveals genome-wide daily rhythms in DNA binding and uncovers output functions that are controlled by the circadian oscillator
    corecore