32 research outputs found

    New data from Oman indicate benthic high biomass productivity coupled with low taxonomic diversity in the aftermath of the Permian-Triassic Boundary mass extinction

    Full text link
    A new Early Triassic marine fauna is described from an exotic block (olistolith) from the Ad Daffah conglomerate in eastern Oman (Batain), which provides new insights into the ecology and diversity during the early aftermath of the Permian–Triassic Boundary mass extinction. Based on conodont quantitative biochronology, we assign a middle Griesbachian age to the upper part of this boulder. It was derived from an offshore seamount and yielded both nektonic and benthic faunas, including conodonts, ammonoids, gastropods and crinoid ossicles in mass abundance. This demonstrates that despite the stratigraphically near extinction at the Permian–Triassic Boundary, Crinoidea produced enough biomass to form crinoidal limestone as early as middle Griesbachian time. Baudicrinus, previously placed in Dadocrinidae, is now placed in Holocrinidae; therefore, Dadocrinidae are absent in the Early Triassic, and Holocrinidae remains the most basal crown-group articulates, originating during the middle Griesbachian in the Tethyan Realm. Abundant gastropods assigned to Naticopsis reached a shell size larger than 20 mm and provide another example against any generalized Lilliput effect during the Griesbachian. Whereas the benthic biomass was as high as to allow the resumption of small carbonate factories, the taxonomic diversity of the benthos remained low compared to post-Early Triassic times. This slow benthic taxonomic recovery is here attributed to low competition within impoverished post-extinction faunas. □ benthos, biotic recovery, Griesbachian, Oman, Permian–Triassic Boundary

    Effect of the silane concentration on the selected properties of an experimental microfilled composite resin

    Get PDF
    The aim of present study was evaluate the effect of different percentages of an organo-functionalized silane monomer as adhesion promoter between barium borosilicate glass fillers and (co)monomer blend in experimental dental composite resin. Gamma-methacryloxypropyltrimethoxysilane (γ-MPS) was assessed in an experimental luting cement, at the concentrations of 0, 1, 3, 5, 7 and 10 (wt%). The experimental resin without fillers was used as control group. The flexural strength (FS) and elastic modulus (E) were obtained by mini-flexural test and expressed in MPa and GPa, respectively. Water sorption (WS) and solubility (SL) were determined based on ISO standard 4049:2000. Kruskal–Wallis and Student–Newman–Keuls test were used for comparisons of FS, E and WS. The comparisons of SL means were performed using one-way ANOVA and Tukey's method (α = 5 %). The treatment with 3 % silane revealed statistically higher FS, while the group treated with 1 % silane showed statistically higher E than 3 % silane (p < 0.05) and E similar to control. The experimental composite without filler content showed the highest SL (p < 0.05) while the control composite showed the highest WS (p < 0.05). Based on present findings, flexural strength and elastic modulus can sometimes be improved with lower concentrations (1–3 %) rather than higher concentrations (5–7 %) of the silane (γ-MPS) used as coupling agent on barium borosilicate glass filler microparticles of the dental composite resin
    corecore