18 research outputs found

    Effect of the silane concentration on the selected properties of an experimental microfilled composite resin

    Get PDF
    The aim of present study was evaluate the effect of different percentages of an organo-functionalized silane monomer as adhesion promoter between barium borosilicate glass fillers and (co)monomer blend in experimental dental composite resin. Gamma-methacryloxypropyltrimethoxysilane (γ-MPS) was assessed in an experimental luting cement, at the concentrations of 0, 1, 3, 5, 7 and 10 (wt%). The experimental resin without fillers was used as control group. The flexural strength (FS) and elastic modulus (E) were obtained by mini-flexural test and expressed in MPa and GPa, respectively. Water sorption (WS) and solubility (SL) were determined based on ISO standard 4049:2000. Kruskal–Wallis and Student–Newman–Keuls test were used for comparisons of FS, E and WS. The comparisons of SL means were performed using one-way ANOVA and Tukey's method (α = 5 %). The treatment with 3 % silane revealed statistically higher FS, while the group treated with 1 % silane showed statistically higher E than 3 % silane (p < 0.05) and E similar to control. The experimental composite without filler content showed the highest SL (p < 0.05) while the control composite showed the highest WS (p < 0.05). Based on present findings, flexural strength and elastic modulus can sometimes be improved with lower concentrations (1–3 %) rather than higher concentrations (5–7 %) of the silane (γ-MPS) used as coupling agent on barium borosilicate glass filler microparticles of the dental composite resin

    A revised classification of the Dictyoteae (Dictyotales, Phaeophyceae) based on rbcL and 26S ribosomal DNA sequence analyses

    No full text
    Dictyota is a genus of tropical to warm temperate brown algae characterized by parenchymatous, flattened thalli that grow from a single, transversely oriented apical cell. Dictyota is currently distinguished from allied genera of the tribe Dictyoteae (Dilophus, Glossophora, Glossophorella, and Pachydictyon) by the structure of the cortical and medullary layers, as well as the relative abundance of surface proliferations. Even though the traditional classification of the Dictyoteae has repeatedly been criticized in the past, the absence of sound molecular data has so far discouraged any new taxonomic proposals apart from a merger of Dilophus with Dictyota, which has been accepted by only part of the phycological community. Phylogenetic analysis of rbcL gene, partial 26S rDNA sequence, and combined data sets, including four of five generitypes, demonstrates that the traditional classification does not accurately reflect the evolutionary history of the group. None of the genera are resolved as a monophyletic clade. Hence, a merger of Glossophora, Glossophorella, and Pachydictyon in Dictyota is proposed. Two new genera, Canistrocarpus (incorporating D. cervicornis, D. crispata, and D. magneana) and Rugulopteryx (accommodating D. radicans, Dil. suhrii, and Dil. marginata), are proposed. Both genera are supported by molecular indications and a combination of reproductive and vegetative characters. The position of Dil. fastigiatus as a clade sister to Dictyota s.1. and the absence of Dil. gunnianus, the generitype of Dilophus, from the analyses, prevented us from making a more definite statement on the status of the latter genus
    corecore