264 research outputs found

    Cosmic ray driven dynamo in barred and ringed galaxies

    Get PDF
    We study the global evolution of the magnetic field and interstellar medium (ISM) of the barred and ringed galaxies in the presence of non-axisymmetric components of the potential, i.e. the bar and/or the oval perturbations. The magnetohydrodynamical dynamo is driven by cosmic rays (CR), which are continuously supplied to the disk by supernova (SN) remnants. Additionally, weak, dipolar and randomly oriented magnetic field is injected to the galactic disk during SN explosions. To compare our results directly with the observed properties of galaxies we construct realistic maps of high-frequency polarized radio emission. The main result is that CR driven dynamo can amplify weak magnetic fields up to few μ\muG within few Gyr in barred and ringed galaxies. What is more, the modelled magnetic field configuration resembles maps of the polarized intensity observed in barred and ringed galaxies

    Formation of gaseous arms in barred galaxies with dynamically important magnetic field : 3D MHD simulations

    Get PDF
    We present results of three-dimensional nonlinear MHD simulations of a large-scale magnetic field and its evolution inside a barred galaxy with the back reaction of the magnetic field on the gas. The model does not consider the dynamo process. To compare our modeling results with observations, we construct maps of the high-frequency (Faraday-rotation-free) polarized radio emission on the basis of simulated magnetic fields. The model accounts for the effects of projection and the limited resolution of real observations. We performed 3D MHD numerical simulations of barred galaxies and polarization maps. The main result is that the modeled magnetic field configurations resemble maps of the polarized intensity observed in barred galaxies. They exhibit polarization vectors along the bar and arms forming coherent structures similar to the observed ones. In the paper, we also explain the previously unsolved issue of discrepancy between the velocity and magnetic field configurations in this type of galaxies. The dynamical influence of the bar causes gas to form spiral waves that travel outwards. Each gaseous spiral arm is accompanied by a magnetic counterpart, which separates and survives in the inter-arm region. Because of a strong compression, shear of non-axisymmetric bar flows and differential rotation, the total energy of modeled magnetic field grows constantly, while the azimuthal flux grows slightly until 0.05\Gyr and then saturates.Comment: 4 pages, 4 figure

    Simulations of galactic dynamos

    Full text link
    We review our current understanding of galactic dynamo theory, paying particular attention to numerical simulations both of the mean-field equations and the original three-dimensional equations relevant to describing the magnetic field evolution for a turbulent flow. We emphasize the theoretical difficulties in explaining non-axisymmetric magnetic fields in galaxies and discuss the observational basis for such results in terms of rotation measure analysis. Next, we discuss nonlinear theory, the role of magnetic helicity conservation and magnetic helicity fluxes. This leads to the possibility that galactic magnetic fields may be bi-helical, with opposite signs of helicity and large and small length scales. We discuss their observational signatures and close by discussing the possibilities of explaining the origin of primordial magnetic fields.Comment: 28 pages, 15 figure, to appear in Lecture Notes in Physics "Magnetic fields in diffuse media", Eds. E. de Gouveia Dal Pino and A. Lazaria

    Distributed physical sensors network for the protection of critical infrastractures against physical attacks

    Get PDF
    The SCOUT project is based on the use of multiple innovative and low impact technologies for the protection of space control ground stations and the satellite links against physical and cyber-attacks, and for intelligent reconfiguration of the ground station network (including the ground node of the satellite link) in the case that one or more nodes fail. The SCOUT sub-system devoted to physical attacks protection, SENSNET, is presented. It is designed as a network of sensor networks that combines DAB and DVB-T based passive radar, noise radar, Ku-band radar, infrared cameras, and RFID technologies. The problem of data link architecture is addressed and the proposed solution described

    Towards transnational feminist queer methodologies

    Get PDF
    This article introduces the possibilities of transnational feminist queer research as seeking to conceptualise the transnational as a methodology composed of a series of flows that can augment feminist and queer research. Transnational feminist queer methodologies can contest long-standing configurations of power between researcher and researched, subject and object, academics and activists across places, typically those which are embedded in the hierarchies of the Global North/Global South. Beginning with charting our roots in, and routes through, the diverse arenas of transnational, feminist, participatory and queer methodologies, the article uses a transcribed and edited conversation between members of the Liveable Lives research team in Kolkata and Brighton, to start an exploration of transnational feminist queer methodologies. Understanding the difficult, yet constructive moments of collaborative work and dialogue, we argue for engagements with the multiplicities of ‘many-many' lives that recognise local specificities, and the complexities of lives within transnational research, avoiding creating a currency of comparison between places. We seek to work toward methodologies that take seriously the politics of place, namely by creating research that answers the same question in different places, using methods that are created in context and may not be ‘comparable'. Using a dialogue across the boundaries of activism/academia, as well as across geographical locations, the article contends that there are potentials, as well as challenges, in thinking ourselves through transnational research praxis. This seeks complexities and spatial nuances within as well as between places

    Attitudes towards the ‘stranger’: negotiating encounters with difference in the UK and Poland

    Get PDF
    Due to recent intensification in international mobility in Europe, its citizens are exposed to a much wider range of lifestyles and competing attitudes towards difference. Individuals are, therefore, increasingly likely to encounter ‘strangers’ and are, therefore, required to negotiate discontinuities and contradictions between the values that are transmitted through different sites. In response, the article explores the concept of the ‘stranger’ through original data collected in the UK and Poland. The article highlights that the construction of who is a stranger depends on national historical contexts, core values and related visions of the society. The UK and Poland have very different histories and experiences with social diversity, impacting on the ways in which individuals negotiate strange encounters. In both countries, the ‘stranger’ is often seen in a negative way and in relation to the minority groups that are perceived to be visibly different, distinct or ‘unknown’ in contemporary times. In Poland, this is now largely articulated through sexual prejudice (homophobia), whilst in the UK, attitudes towards the ‘stranger’ are largely conveyed through religious prejudice (Islamophobia). As such, the article offers a means of understanding how encounters with difference ‘produce’ strangers in different contexts

    Theory and Applications of Non-Relativistic and Relativistic Turbulent Reconnection

    Full text link
    Realistic astrophysical environments are turbulent due to the extremely high Reynolds numbers. Therefore, the theories of reconnection intended for describing astrophysical reconnection should not ignore the effects of turbulence on magnetic reconnection. Turbulence is known to change the nature of many physical processes dramatically and in this review we claim that magnetic reconnection is not an exception. We stress that not only astrophysical turbulence is ubiquitous, but also magnetic reconnection itself induces turbulence. Thus turbulence must be accounted for in any realistic astrophysical reconnection setup. We argue that due to the similarities of MHD turbulence in relativistic and non-relativistic cases the theory of magnetic reconnection developed for the non-relativistic case can be extended to the relativistic case and we provide numerical simulations that support this conjecture. We also provide quantitative comparisons of the theoretical predictions and results of numerical experiments, including the situations when turbulent reconnection is self-driven, i.e. the turbulence in the system is generated by the reconnection process itself. We show how turbulent reconnection entails the violation of magnetic flux freezing, the conclusion that has really far reaching consequences for many realistically turbulent astrophysical environments. In addition, we consider observational testing of turbulent reconnection as well as numerous implications of the theory. The former includes the Sun and solar wind reconnection, while the latter include the process of reconnection diffusion induced by turbulent reconnection, the acceleration of energetic particles, bursts of turbulent reconnection related to black hole sources as well as gamma ray bursts. Finally, we explain why turbulent reconnection cannot be explained by turbulent resistivity or derived through the mean field approach.Comment: 66 pages, 24 figures, a chapter of the book "Magnetic Reconnection - Concepts and Applications", editors W. Gonzalez, E. N. Parke
    corecore