18 research outputs found

    Data Safeguarding against Internal and External Threats

    Get PDF
    Today, many organisations use Information Systems to manage their sensitive and critical business related information. The need to protect such a key component of the organisation, and avoid data theft cannot be overemphasised. Data theft can be defined as the act of stealing computer-based information from an unknowing victim with the intent of compromising privacy or obtaining confidential information. The project on which this paper is based deals with the safeguarding of data against internal as well as external threats. The internal threats in this project deal with leakage of data from within an organisation by the means of mountable devices such as USB drives, while the external threats that are considered are those that corrupt data and cause its loss by means of ransomware attacks. Ransomware is malware for data kidnapping, an exploit in which the attacker encrypts the victim's data and demands payment for the decryption key. This paper describes the ways to thwart such external attacks by monitoring a set of folders for early detection of ransomware. On the other hand, internal threats are handling by means of encrypting data while transferring it over USB drives and other mountable devices

    The molecular landscape of the University of Michigan laryngeal squamous cell carcinoma cell line panel

    Full text link
    BackgroundLaryngeal squamous cell carcinomas (LSCCs) have a high risk of recurrence and poor prognosis. Patient‐derived cancer cell lines remain important preclinical models for advancement of new therapeutic strategies, and comprehensive characterization of these models is vital in the precision medicine era.MethodsWe performed exome and transcriptome sequencing as well as copy number analysis of a panel of LSCC‐derived cell lines that were established at the University of Michigan and are used in laboratories worldwide.ResultsWe observed a complex array of alterations consistent with those reported in The Cancer Genome Atlas head and neck squamous cell carcinoma project, including aberrations in PIK3CA, EGFR, CDKN2A, TP53, and NOTCH family and FAT1 genes. A detailed analysis of FAT family genes and associated pathways showed disruptions to these genes in most cell lines.ConclusionsThe molecular profiles we have generated indicate that as a whole, this panel recapitulates the molecular diversity observed in patients and will serve as useful guides in selecting cell lines for preclinical modeling.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151290/1/hed25803.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151290/2/hed25803_am.pd

    Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial

    Get PDF
    Background: Glucagon-like peptide 1 receptor agonists differ in chemical structure, duration of action, and in their effects on clinical outcomes. The cardiovascular effects of once-weekly albiglutide in type 2 diabetes are unknown. We aimed to determine the safety and efficacy of albiglutide in preventing cardiovascular death, myocardial infarction, or stroke. Methods: We did a double-blind, randomised, placebo-controlled trial in 610 sites across 28 countries. We randomly assigned patients aged 40 years and older with type 2 diabetes and cardiovascular disease (at a 1:1 ratio) to groups that either received a subcutaneous injection of albiglutide (30–50 mg, based on glycaemic response and tolerability) or of a matched volume of placebo once a week, in addition to their standard care. Investigators used an interactive voice or web response system to obtain treatment assignment, and patients and all study investigators were masked to their treatment allocation. We hypothesised that albiglutide would be non-inferior to placebo for the primary outcome of the first occurrence of cardiovascular death, myocardial infarction, or stroke, which was assessed in the intention-to-treat population. If non-inferiority was confirmed by an upper limit of the 95% CI for a hazard ratio of less than 1·30, closed testing for superiority was prespecified. This study is registered with ClinicalTrials.gov, number NCT02465515. Findings: Patients were screened between July 1, 2015, and Nov 24, 2016. 10 793 patients were screened and 9463 participants were enrolled and randomly assigned to groups: 4731 patients were assigned to receive albiglutide and 4732 patients to receive placebo. On Nov 8, 2017, it was determined that 611 primary endpoints and a median follow-up of at least 1·5 years had accrued, and participants returned for a final visit and discontinuation from study treatment; the last patient visit was on March 12, 2018. These 9463 patients, the intention-to-treat population, were evaluated for a median duration of 1·6 years and were assessed for the primary outcome. The primary composite outcome occurred in 338 (7%) of 4731 patients at an incidence rate of 4·6 events per 100 person-years in the albiglutide group and in 428 (9%) of 4732 patients at an incidence rate of 5·9 events per 100 person-years in the placebo group (hazard ratio 0·78, 95% CI 0·68–0·90), which indicated that albiglutide was superior to placebo (p<0·0001 for non-inferiority; p=0·0006 for superiority). The incidence of acute pancreatitis (ten patients in the albiglutide group and seven patients in the placebo group), pancreatic cancer (six patients in the albiglutide group and five patients in the placebo group), medullary thyroid carcinoma (zero patients in both groups), and other serious adverse events did not differ between the two groups. There were three (<1%) deaths in the placebo group that were assessed by investigators, who were masked to study drug assignment, to be treatment-related and two (<1%) deaths in the albiglutide group. Interpretation: In patients with type 2 diabetes and cardiovascular disease, albiglutide was superior to placebo with respect to major adverse cardiovascular events. Evidence-based glucagon-like peptide 1 receptor agonists should therefore be considered as part of a comprehensive strategy to reduce the risk of cardiovascular events in patients with type 2 diabetes. Funding: GlaxoSmithKline

    A Highly Sensitive Biocompatible Spin Probe for Imaging of Oxygen Concentration in Tissues

    Get PDF
    The development of an injectable probe formulation, consisting of perchlorotriphenylmethyl triester radical dissolved in hexafluorobenzene, for in vivo oximetry and imaging of oxygen concentration in tissues using electron paramagnetic resonance (EPR) imaging is reported. The probe was evaluated for its oxygen sensitivity, biostability, and distribution in a radiation-induced fibrosarcoma tumor transplanted into C3H mice. Some of the favorable features of the probe are: a single narrow EPR peak (anoxic linewidth, 41 μT), high solubility in hexafluorobenzene (>12 mM), large linewidth sensitivity to molecular oxygen (∼1.8 μT/mmHg), good stability in tumor tissue (half-life: 3.3 h), absence of spin-spin broadening (up to 12 mM), and lack of power saturation effects (up to 200 mW). Three-dimensional spatial and spectral-spatial (spectroscopic) EPR imaging measurements were used to visualize the distribution of the probe, as well as to obtain spatially resolved pO(2) information in the mice tumor subjected to normoxic and hyperoxic treatments. The new probe should enable unique opportunities for measurement of the oxygen concentration in tumors using EPR methods

    Whole‐Exome Sequencing of Sinonasal Small Cell Carcinoma Arising within a Papillary Schneiderian Carcinoma In Situ

    No full text
    ObjectiveThe pathogenetic underpinnings of extrapulmonary small cell carcinomas (EPSCCs) of the head and neck are poorly understood. We sought to describe the clinical case and whole-exome DNA sequencing data of a patient with sinonasal Schneiderian carcinoma in situ whose tumor progressed to small cell carcinoma (SCC).Study designCase report and whole-exome sequencing of tumor DNA.SettingAcademic medical center.Subjects and methodsA 52-year-old man with sinonasal Schneiderian carcinoma in situ whose tumor progressed to small cell carcinoma. We performed whole-exome genetic sequencing and copy-number variation (CNV) analysis of tumor and normal DNA extracted from flash-frozen, paraffin-embedded (FFPE) samples.ResultsA total of 93 high-confidence, nonsynonymous somatic mutation events were identified in sinonasal SCC, including loss-of-function mutations in TP53, MAML3, a transcriptional coactivator of the Notch pathway, and GAS6, an activating ligand of the TAM family of tyrosine kinase receptors. Focal amplifications of chromosomal regions 6p25-11.1, containing SOX4 and VEGFA, and 14q32.1-32.3, containing AKT1 and the Notch inhibitory ligand DLK1, were also seen. Further CNV analysis revealed deletions in the critical cell cycle regulators CDKN2A, RB1, RBL1, and RBL2 and the chromatin modifier EP300.ConclusionsSmall cell carcinoma may rarely arise from sinonasal Schneiderian carcinoma in situ and exhibits similar genomic aberrations (eg, SOX amplification, Notch pathway inactivation) to pulmonary small cell carcinoma

    The molecular landscape of the University of Michigan laryngeal squamous cell carcinoma cell line panel

    No full text
    BackgroundLaryngeal squamous cell carcinomas (LSCCs) have a high risk of recurrence and poor prognosis. Patient‐derived cancer cell lines remain important preclinical models for advancement of new therapeutic strategies, and comprehensive characterization of these models is vital in the precision medicine era.MethodsWe performed exome and transcriptome sequencing as well as copy number analysis of a panel of LSCC‐derived cell lines that were established at the University of Michigan and are used in laboratories worldwide.ResultsWe observed a complex array of alterations consistent with those reported in The Cancer Genome Atlas head and neck squamous cell carcinoma project, including aberrations in PIK3CA, EGFR, CDKN2A, TP53, and NOTCH family and FAT1 genes. A detailed analysis of FAT family genes and associated pathways showed disruptions to these genes in most cell lines.ConclusionsThe molecular profiles we have generated indicate that as a whole, this panel recapitulates the molecular diversity observed in patients and will serve as useful guides in selecting cell lines for preclinical modeling.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151290/1/hed25803.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151290/2/hed25803_am.pd

    Genetic analysis of sinonasal undifferentiated carcinoma discovers recurrent SWI/SNF alterations and a novel PGAP3-SRPK1 fusion gene

    Full text link
    Abstract Background Sinonasal Undifferentiated Carcinoma (SNUC) is a rare and aggressive skull base tumor with poor survival and limited treatment options. To date, targeted sequencing studies have identified IDH2 and SMARCB1 as potential driver alterations, but the molecular alterations found in SMARCB1 wild type tumors are unknown. Methods We evaluated survival outcomes in a cohort of 46 SNUC patients treated at an NCI designated cancer center and identify clinical and disease variables associated with survival on Kaplan-Meier and Cox multivariate survival analysis. We performed exome sequencing to characterize a series of SNUC tumors (n = 5) and cell line (MDA8788–6) to identify high confidence mutations, copy number alterations, microsatellite instability, and fusions. Knockdown studies using siRNA were utilized for validation of a novel PGAP3-SRPK1 gene fusion. Results Overall survival analysis revealed no significant difference in outcomes between patients treated with surgery +/− CRT and CRT alone. Tobacco use was the only significant predictor of survival. We also confirmed previously published findings on IDH and SMARC family mutations and identified novel recurrent aberrations in the JAK/STAT and PI3K pathways. We also validated a novel PGAP3-SRPK1 gene fusion in the SNUC cell line, and show that knockdown of the fusion is negatively associated with EGFR, E2F and MYC signaling. Conclusion Collectively, these data demonstrate recurrent alterations in the SWI/SNF family as well as IDH, JAK/STAT, and PI3K pathways and discover a novel fusion gene (PGAP3-SRPK1). These data aim to improve understanding of possible driver mutations and guide future therapeutic strategies for this disease.http://deepblue.lib.umich.edu/bitstream/2027.42/173540/1/12885_2021_Article_8370.pd

    Neglected tropical diseases and omics science:Proteogenomics analysis of the promastigote stage of leishmania major parasite

    No full text
    Among the neglected tropical diseases, leishmaniasis is one of the most devastating, resulting in significant mortality and contributing to nearly 2 million disability-adjusted life years. Cutaneous leishmaniasis is a debilitating disorder caused by the kinetoplastid protozoan parasite Leishmania major, which results in disfiguration and scars. L. major genome was the first to be sequenced within the genus Leishmania. Use of proteomic data for annotating genomes is a complementary approach to conventional genome annotation approaches and is referred to as proteogenomics. We have used a proteogenomics-based approach to map the proteome of L. major and also annotate its genome. In this study, we searched L. major promastigote proteomic data against the annotated L. major protein database. Additionally, we searched the proteomic data against six-frame translated L. major genome. In all, we identified 3613 proteins in L. major promastigotes, which covered 43% of its proteome. We also identified 26 genome search-specific peptides, which led to the identification of three novel genes previously not identified in L. major. We also corrected the annotation of N-termini of 15 genes, which resulted in extension of their protein products. We have validated our proteogenomics findings by RT-PCR and sequencing. In addition, our study resulted in identification of 266 N-terminally acetylated peptides in L. major, one of the largest acetylated peptide datasets thus far in Leishmania. This dataset should be a valuable resource to researchers focusing on neglected tropical diseases.</p

    Small molecule profiling to define synergistic EGFR inhibitor combinations in head and neck squamous cell carcinoma.

    No full text
    BackgroundHead and neck squamous cell carcinoma (HNSCC) is a debilitating disease with poor survival. Although epidermal growth factor receptor (EGFR)-targeting antibody cetuximab improves survival in some settings, responses are limited suggesting that alternative approaches are needed.MethodsWe performed a high throughput drug screen to identify EGFR inhibitor-based synergistic combinations of clinically advanced inhibitors in models resistant to EGFR inhibitor monotherapies, and then performed downstream validation experiments on prioritized synergistic combinations.ResultsFrom our screen, we re-discovered known synergistic EGFR inhibitor combinations with FGFR or IGF-1R inhibitors that were broadly effective and also discovered novel synergistic combinations with XIAP inhibitor and DNMT inhibitors that were effective in only a subset of models.ConclusionsConceptually, our data identify novel synergistic combinations that warrant evaluation in future studies, and suggest that some combinations, although highly synergistic, will require parallel companion diagnostic development to be effectively advanced in patients
    corecore