37 research outputs found

    Utilization of tmRNA sequences for bacterial identification

    No full text
    In recent years, molecular approaches based on nucleotide sequences of ribosomal RNA (rRNA) have become widely used tools for identification of bacteria [1-4]. The high degree of evolutionary conservation makes 16S and 23S rRNA molecules very suitable for phylogenetic studies above the species level [3-5]. More than 16,000 sequences of 16S rRNA are presently available in public databases [4,6]. The 16S rRNA sequences are commonly used to design fluorescently labeled oligonucleotide probes. Fluorescence in situ hybridization (FISH) with these probes followed by observation with epifluorescence microscopy allows the identification of a specific microorganism in a mixture with other bacteria [2-4]. By shifting probe target sites from conservative to increasingly variable regions of rRNA, it is possible to adjust the probe specificity from kingdom to species level. Nevertheless, 16S rRNA sequences of closely related strains, subspecies, or even of different species are often identical and therefore can not be used as differentiating markers [3]. Another restriction concerns the accessibility of target sites to the probe in FISH experiments. The presence of secondary structures, or protection of rRNA segments by ribosomal proteins in fixed cells can limit the choice of variable regions as in situ targets for oligonucleotide probes [7,8]. One way to overcome the limitations of in situ identification of bacteria is to use molecules other than rRNA for phylogenetic identification of bacteria, for which nucleotide sequences would be sufficiently divergent to design species specific probes, and which would be more accessible to oligonucleotide probes. For this purpose we investigated the possibility of using tmRNA (also known as 10Sa RNA; [9-11]). This molecule was discovered in E. coli and described as small stable RNA, present at ~1,000 copies per cell [9,11]. The high copy number is an important prerequisite for FISH, which works best with naturally amplified target molecules. In E. coli, tmRNA is encoded by the ssrA gene, is 363 nucleotides long and has properties of tRNA and mRNA [12,13]. tmRNA was shown to be involved in the degradation of truncated proteins: the tmRNA associates with ribosomes stalled on mRNAs lacking stop codons, finally resulting in the addition of a C-terminal peptide tag to the truncated protein. The peptide tag directs the abnormal protein to proteolysis [14,15]. 165 tmRNA sequences have so far (August 2001; The tmRNA Website: http://www.indiana.edu/~tmrna/) been determined [16,17]. The tmRNA is likely to be present in all bacteria and has also been found in algae chloroplasts, the cyanelle of Cyanophora paradoxa and the mitochondrion of the flagellate Reclinomonas americana[10,17,18]

    A moonlighting role for LysM peptidoglycan binding domains underpins Enterococcus faecalis daughter cell separation

    Get PDF
    Control of cell size and morphology is of paramount importance for bacterial fitness. In the opportunistic pathogen Enterococcus faecalis, the formation of diplococci and short cell chains facilitates innate immune evasion and dissemination in the host. Minimisation of cell chain size relies on the activity of a peptidoglycan hydrolase called AtlA, dedicated to septum cleavage. To prevent autolysis, AtlA activity is tightly controlled, both temporally and spatially. Here, we show that the restricted localization of AtlA at the septum occurs via an unexpected mechanism. We demonstrate that the C-terminal LysM domain that allows the enzyme to bind peptidoglycan is essential to target this enzyme to the septum inside the cell before its translocation across the membrane. We identify a membrane-bound cytoplasmic protein partner (called AdmA) involved in the recruitment of AtlA via its LysM domains. This work reveals a moonlighting role for LysM domains, and a mechanism evolved to restrict the subcellular localization of a potentially lethal autolysin to its site of action

    In situ detection of Escherichia coli cells containing ColE1-related plasmids by hybridization to regulatory RNA II

    No full text
    A method is described for the in situ detection of individual whole fixed cells of Escherichia coli containing ColE1-related plasmids. It makes use of fluorescence in situ hybridization (FISH) and the regulatory RNA II as a target molecule for both, Cy3- and HRP-labeled olinucleotide probes. Various methods for signal amplification were compared. Probes targeting the regulatory RNA I did not result in the in situ detection of plasmid-bearing cells

    Organization and sequence of the HpaII restriction-modification system and adjacent genes

    No full text
    We report the organization of the HpaII restriction and modification (R-M) system from Haemophilus parainfluenzae (recognition sequence: 5'...CCGG...3'), the sequence of the gene coding for the HpaII restriction endonuclease, and the sequence of the upstream flanking DNA. The HpaII system comprises two genes, hpaIIM, coding for the methyltransferase (MTase; 358 amino acids (aa), 40.4 kDa: product, Cm5CGG), and hpaIIR, coding for the restriction endonuclease (ENase; 358 aa, 40.9 kDa: product, C'CGG). The genes are adjacent, they have the same orientation, and they occur in the order hpaIIM then hpaIIR. The ENase bears little as sequence similarity to the isoschizomeric R.BsuFI and R.MspI ENases. Upstream of, and partly overlapping hpaIIM is the coding sequence for a 141-aa protein that resembles the very-short-patch-repair endonuclease (Vsr) of Escherichia coli. Upstream of that is the coding sequence for a protein that resembles valyl-tRNA synthetase (ValS)
    corecore