37 research outputs found

    Cerebrovascular complications of hematopoetic stem cell transplantation in patients with hematologic malignancies

    Get PDF
    Introduction. Modern transplantation and biological therapy methods are associated with a wide range of adverse events and complications. Incidence and variety of neurological complications mostly depend on myelo- and immunosuppression severity and duration as well as on donor's and recipient's characteristics. The most frequent complications involving the nervous system include neurotoxic reactions, infections, autoimmune and lymphoproliferative diseases, and dysmetabolic conditions as well as cerebrovascular complications that potentially affect transplantation outcomes. Objective. To evaluate the impact of post-transplantation cerebrovascular events (CVEs) on transplantation outcomes in patients with hematologic malignancies. Materials and methods. We analyzed 899 transplantations performed at the Raisa Gorbacheva Memorial Research Institute for Pediatric Oncology, Hematology, and Transplantation, Pavlov First Saint Petersburg State Medical University, from 2016 to 2018. We assessed transplantation parameters and donor's and recipient's characteristics by intergroup comparison, pseudo-randomization (propensity score matching), KaplanMeier survival analysis, and log-rank tests. Results. Post-transplantatively, CVEs developed in 2.6% (n = 23) of cases: 13 (1.4%) ischemic strokes and 11 (1.2%) hemorrhagic strokes or intracranial hemorrhages were diagnosed. CVEs developed on days 99.5 39.2 post hematopoetic stem cell transplantation (HSCT). There were more patients with non-malignant conditions in the CVE group as compared to the non-CVE group (21.7% vs 7.9%; p = 0.017). Patients with CVE had a significantly lower Karnofsky index (75.6 21.3 vs 85.2 14.9; p = 0.008). Statistically, we also note some non-significant trends: patients with CVE more often underwent allogenic HSCT (82.6% vs 64.0%; p = 0.077) while donors were more often partially (rather than totally) HLA compatible for recipients (39.1% vs 21.1%; p = 0.33). Patients with CVE more often had a history of venous thromboses (13.3% vs 4.2%; p = 0.077). Post-HSCT stroke decreased post-transplantation longevity by approximately 3 times (331.8 81.6 vs 897.9 25.4 post HSCT; p = 0.0001). In the CVE group, survival during first 180 days post HSCT (landmarks post-HSCT Day+60 and Day+180) was significantly lower as compared to that in the CVE-free group. If CVE developed during first 30 days and 100 days post HSCT, vascular catastrophe did not affect post-HSCT survival significantly. Conclusion. Whereas ischemic stroke is a long-term HSCT complication (beyond D+100 post transplantation), hemorrhagic stroke is a short-term complication (D0D+100 post HSCT). CVEs affect survival in patients with hematologic malignancies, especially those developed between D+60 and D+180 post HSCT. History of venous abnormalities, low Karnofsky index at HSCT initiation, and the type of allogenic HSCT, especially from half-matched donors, can be considered as negative outcome risk factors in post-HSCT CVE

    Predictions for cold nuclear matter effects in p plus Pb collisions at root SNN =8.16 TeV

    Get PDF
    Predictions for cold nuclear matter effects on charged hadrons, identified light hadrons, quarkonium and heavy flavor hadrons, Drell-Yan dileptons, jets, photons, gauge bosons and top quark pairs produced in p+Pb collisions at, root S-NN = 8.16 TeV are compiled and, where possible, compared to each other. Predictions of the normalized ratios of p+Pb to p+ p cross sections are also presented for most of the observables, providing new insights into the expected role of cold nuclear matter effects. In particular, the role of nuclear parson distribution functions on particle production can now be probed over a wider range of phase space than ever before. (C) 2018 Elsevier B.V. All rights reserved.Peer reviewe

    Study on Elastic Elements Allocation for Energy-Efficient Robotic Cheetah Leg

    Get PDF
    The biomimetic approach in robotics is promising: nature has found many good solutions through millions of years of evolution. However, creating a design that enables fast and energy-efficient locomotion remains a major challenge. This paper focuses on the development of a full leg mechanism for a fast and energy-efficient 4-legged robot inspired by a cheetah morphology. In particular, we analyze how the allocation of flexible elements and their stiffness affects the cost of transport and peak power characteristics for vertical jumps and a galloping motion. The study includes the femur and full leg mechanism's locomotory behavior simulation, capturing its interaction with the ground

    Экспериментальное исследование эффективности утепления наружных ограждающих конструкций стен здания

    Get PDF
    The relevance of research is caused by the fact that at present, modern standards for saving thermal energy and thermal protection of buildings are focused on the use of a very limited set of solutions to reduce energy consumption, which do not always meet the specific conditions of construction and are often very expensive. A method for studying the effective insulation of building envelopes is proposed, taking into account the relationship between structural, heating, regime parameters and economic indicators. The goal is to determine the optimal value of the insulation thickness of the heat-insulating material, taking into account the thermal energy supplied to the object. The study used methods of mathematical modeling of heat transfer, optimization problem. An experimental study is presented, showing the possibility of applying the method of technical and economic optimization of thermal insulation of building envelopes. It was determined on the basis of the mathematical model of the thermal insulation of building envelopes developed by the authors, taking into account the regulation of the supplied thermal energy. The result of the study is to reduce the cost of heat losses through building envelopes and electrical energy for the regulation of the “heating, ventilation and air conditioning” system. The conducted studies testify to the expediency of using the proposed developments, which contribute to determining the optimal thickness of wall insulation with heat-insulating material, finding the minimum reduced costs, and an advantageous choice of a method for regulating the supplied thermal energyАктуальность исследований обусловлена тем, что в настоящее время современные нормы сбережения тепловой энергии и теплозащиты зданий ориентированы на применение весьма ограниченного набора решений по снижению энергетического потребления, не всегда отвечающих конкретным условиям строительства и зачастую весьма дорогостоящих. Предложена методика исследования эффективного утепления ограждающих конструкций стен зданий, учитывающая взаимосвязь конструктивных, теплотехнических, режимных параметров и экономических показателей. Целью является определение оптимального значения толщины утепления теплоизоляционным материалом объекта с учетом отпускаемой ему тепловой энергии. В проведенном исследовании использовались методы математического моделирования теплообмена, оптимизационной задачи. Представлено экспериментальное исследование, показывающие возможность применения методики технико-экономической оптимизации тепловой изоляции ограждающих конструкций стен здания. Результатом исследования является снижение расходов тепловых потерь через ограждающие конструкции и электрической энергии на регулирование системы «отопление, вентиляция и кондиционирование». Проведенные исследования свидетельствуют о целесообразности использования предложенных разработок, способствующих определению оптимальной толщины утепления теплоизоляционным материалом стен объектов, нахождению минимальных приведенных затрат, выгодному выбору способа регулирования отпускаемой тепловой энерги

    Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume II: DUNE Physics

    No full text
    The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay -- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. DUNE is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. Volume II of this TDR, DUNE Physics, describes the array of identified scientific opportunities and key goals. Crucially, we also report our best current understanding of the capability of DUNE to realize these goals, along with the detailed arguments and investigations on which this understanding is based. This TDR volume documents the scientific basis underlying the conception and design of the LBNF/DUNE experimental configurations. As a result, the description of DUNE's experimental capabilities constitutes the bulk of the document. Key linkages between requirements for successful execution of the physics program and primary specifications of the experimental configurations are drawn and summarized. This document also serves a wider purpose as a statement on the scientific potential of DUNE as a central component within a global program of frontier theoretical and experimental particle physics research. Thus, the presentation also aims to serve as a resource for the particle physics community at large

    Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume I Introduction to DUNE

    No full text
    International audienceThe preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. This TDR is intended to justify the technical choices for the far detector that flow down from the high-level physics goals through requirements at all levels of the Project. Volume I contains an executive summary that introduces the DUNE science program, the far detector and the strategy for its modular designs, and the organization and management of the Project. The remainder of Volume I provides more detail on the science program that drives the choice of detector technologies and on the technologies themselves. It also introduces the designs for the DUNE near detector and the DUNE computing model, for which DUNE is planning design reports. Volume II of this TDR describes DUNE's physics program in detail. Volume III describes the technical coordination required for the far detector design, construction, installation, and integration, and its organizational structure. Volume IV describes the single-phase far detector technology. A planned Volume V will describe the dual-phase technology

    Deep Underground Neutrino Experiment (DUNE) Near Detector Conceptual Design Report

    No full text
    International audienceThe Deep Underground Neutrino Experiment (DUNE) is an international, world-class experiment aimed at exploring fundamental questions about the universe that are at the forefront of astrophysics and particle physics research. DUNE will study questions pertaining to the preponderance of matter over antimatter in the early universe, the dynamics of supernovae, the subtleties of neutrino interaction physics, and a number of beyond the Standard Model topics accessible in a powerful neutrino beam. A critical component of the DUNE physics program involves the study of changes in a powerful beam of neutrinos, i.e., neutrino oscillations, as the neutrinos propagate a long distance. The experiment consists of a near detector, sited close to the source of the beam, and a far detector, sited along the beam at a large distance. This document, the DUNE Near Detector Conceptual Design Report (CDR), describes the design of the DUNE near detector and the science program that drives the design and technology choices. The goals and requirements underlying the design, along with projected performance are given. It serves as a starting point for a more detailed design that will be described in future documents

    Reconstruction of interactions in the ProtoDUNE-SP detector with Pandora

    No full text
    International audienceThe Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at CERN, is exposed to a charged-particle test beam. This paper gives an overview of the Pandora reconstruction algorithms and how they have been tailored for use at ProtoDUNE-SP. In complex events with numerous cosmic-ray and beam background particles, the simulated reconstruction and identification efficiency for triggered test-beam particles is above 80% for the majority of particle type and beam momentum combinations. Specifically, simulated 1 GeV/cc charged pions and protons are correctly reconstructed and identified with efficiencies of 86.1±0.6\pm0.6% and 84.1±0.6\pm0.6%, respectively. The efficiencies measured for test-beam data are shown to be within 5% of those predicted by the simulation

    Reconstruction of interactions in the ProtoDUNE-SP detector with Pandora

    No full text
    International audienceThe Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at CERN, is exposed to a charged-particle test beam. This paper gives an overview of the Pandora reconstruction algorithms and how they have been tailored for use at ProtoDUNE-SP. In complex events with numerous cosmic-ray and beam background particles, the simulated reconstruction and identification efficiency for triggered test-beam particles is above 80% for the majority of particle type and beam momentum combinations. Specifically, simulated 1 GeV/cc charged pions and protons are correctly reconstructed and identified with efficiencies of 86.1±0.6\pm0.6% and 84.1±0.6\pm0.6%, respectively. The efficiencies measured for test-beam data are shown to be within 5% of those predicted by the simulation

    Reconstruction of interactions in the ProtoDUNE-SP detector with Pandora

    No full text
    International audienceThe Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at CERN, is exposed to a charged-particle test beam. This paper gives an overview of the Pandora reconstruction algorithms and how they have been tailored for use at ProtoDUNE-SP. In complex events with numerous cosmic-ray and beam background particles, the simulated reconstruction and identification efficiency for triggered test-beam particles is above 80% for the majority of particle type and beam momentum combinations. Specifically, simulated 1 GeV/cc charged pions and protons are correctly reconstructed and identified with efficiencies of 86.1±0.6\pm0.6% and 84.1±0.6\pm0.6%, respectively. The efficiencies measured for test-beam data are shown to be within 5% of those predicted by the simulation
    corecore