58 research outputs found

    Reverse Remodeling of the Atria After Treatment of Chronic Stretch in Humans Implications for the Atrial Fibrillation Substrate

    Get PDF
    ObjectivesThe aim of this report was to study the effect of chronic stretch reversal on the electrophysiological characteristics of the atria in humans.BackgroundAtrial stretch is an important determinant for atrial fibrillation. Whether relief of stretch reverses the substrate predisposed to atrial fibrillation is unknown.MethodsTwenty-one patients with mitral stenosis undergoing mitral commissurotomy (MC) were studied before and after intervention. Catheters were placed at multiple sites in the right atrium (RA) and sequentially within the left atrium (LA) to determine: effective refractory period (ERP) at 10 sites (600 and 450 ms) and P-wave duration (PWD). Bi-atrial electroanatomic maps determined conduction velocity (CV) and voltage. In 14 patients, RA studies were repeated ≥6 months after MC.ResultsImmediately after MC, there was significant increase in mitral valve area (2.1 ± 0.2 cm2, p < 0.0001) with decrease in LA (23 ± 7 mm Hg to 10 ± 4 mm Hg, p < 0.0001) and pulmonary arterial pressures (38 ± 16 mm Hg to 27 ± 12 mm Hg, p < 0.0001) and LA volume (75 ± 20 ml to 52 ± 18 ml, p < 0.0001). This was associated with reduction in PWD (139 ± 19 ms to 135 ± 20 ms, p = 0.047), increase in CV (LA: 1.3 ± 0.3 mm/ms to 1.7 ± 0.2 mm/ms, p = 0.006; and RA: 1.0 ± 0.1 mm/ms to 1.3 ± 0.3 mm/ms, p = 0.002) and voltage (LA: 1.7 ± 0.6 mV to 2.5 ± 1.0 mV, p = 0.005; and RA: 1.8 ± 0.6 mV to 2.2 ± 0.7 mV, p = 0.09), and no change in ERP. Late after MC, mitral valve area remained at 2.1 ± 0.3 cm2 (p = 0.7) but with further decrease in PWD (113 ± 19 ms, p = 0.04) and RA ERP (at 600 ms, p < 0.0001), with increase in CV (1.0 ± 0.1 mm/ms to 1.3 ± 0.2 mm/ms, p = 0.006) and voltage (1.8 ± 0.7 mV to 2.8 ± 0.6 mV, p = 0.002).ConclusionsThe atrial electrophysiologic and electroanatomic abnormalities that result from chronic stretch due to MS reverses after MC. These observations suggest that the substrate predisposing to atrial arrhythmias might be reversed

    Spatiotemporal characteristics of atrial fibrillation electrograms: a novel marker for arrhythmia stability and termination

    Get PDF
    Background: Sequentially mapped complex fractionated atrial electrograms (CFAE) and dominant frequency (DF) sites have been targeted during catheter ablation for atrial fibrillation (AF). However, these strategies have yielded variable success and have not been shown to correlate consistently with AF dynamics. Here, we evaluated whether the spatiotemporal stability of CFAE and DF may be a better marker of AF sustenance and termination. Methods: Eighteen sheep with 12 weeks of "one-kidney, one-clip" hypertension underwent open-chest studies. A total of 42 self-terminating (28–100 s) and 6 sustained (>15 min) AF episodes were mapped using a custom epicardial plaque and analyzed in 4-s epochs for CFAE, using the NavX CFE-m algorithm, and DF, using a Fast Fourier Transform. The spatiotemporal stability index (STSI) was calculated using the intraclass correlation coefficient of consecutive AF epochs. Results: A total of 67,733 AF epochs were analyzed. During AF initiation, mean CFE-m and the STSI of CFE-m/DF were similar between sustained and self-terminating episodes, although median DF was higher in sustained AF (p=0.001). During sustained AF, the STSI of CFE-m increased significantly (p=0.02), whereas mean CFE-m (p=0.5), median DF (p=0.07), and the STSI of DF remained unchanged (p=0.5). Prior to AF termination, the STSI of CFE-m was significantly lower (p<0.001), with a physiologically non-significant decrease in median DF (−0.3 Hz, p=0.006) and no significant changes in mean CFE-m (p=0.14) or the STSI of DF (p=0.06). Conclusions: Spatiotemporal stabilization of CFAE favors AF sustenance and its destabilization heralds AF termination. The STSI of CFE-m is more representative of AF dynamics than are the STSI of DF, sequential mean CFE-m, or median DF

    Local Electrical Dyssynchrony during Atrial Fibrillation: Theoretical Considerations and Initial Catheter Ablation Results

    Get PDF
    Copyright: © 2016 Kuklik et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Background Electrogram-based identification of the regions maintaining persistent Atrial Fibrillation (AF) is a subject of ongoing debate. Here, we explore the concept of local electrical dyssynchrony to identify AF drivers. Methods and Results Local electrical dyssynchrony was calculated using mean phase coherence. High-density epicardial mapping along with mathematical model were used to explore the link between local dyssynchrony and properties of wave conduction. High-density mapping showed a positive correlation between the dyssynchrony and number of fibrillatory waves (R2 = 0.68, p<0.001). In the mathematical model, virtual ablation at high dyssynchrony regions resulted in conduction regularization. The clinical study consisted of eighteen patients undergoing catheter ablation of persistent AF. High-density maps of left atrial (LA) were constructed using a circular mapping catheter. After pulmonary vein isolation, regions with the top 10% of the highest dyssynchrony in LA were targeted during ablation and followed with ablation of complex atrial electrograms. Catheter ablation resulted in termination during ablation at high dyssynchrony regions in 7 (41%) patients. In another 4 (24%) patients, transient organization was observed. In 6 (35%) there was no clear effect. Long-term follow-up showed 65% AF freedom at 1 year and 22% at 2 years. Conclusions Local electrical dyssynchrony provides a reasonable estimator of regional AF complexity defined as the number of fibrillatory waves. Additionally, it points to regions of dynamical instability related with action potential alternans. However, despite those characteristics, its utility in guiding catheter ablation of AF is limited suggesting other factors are responsible for AF persistence

    Outcomes of long-standing persistent atrial fibrillation ablation: A systematic review

    Get PDF
    BackgroundAblation of long-standing persistent atrial fibrillation (AF) is highly variable, with differing techniques and outcomes.ObjectiveThe purpose of this study was to undertake a systematic review of the literature with regard to the impact of ablation technique on the outcomes of long-standing persistent AF ablation.MethodsA systematic search of the contemporary English scientific literature (from January 1, 1990 to June 1, 2009) in the PubMed database identified 32 studies on persistent/long-standing persistent or long-standing persistent AF ablation (including four randomized controlled trials). Data on single-procedure, drug-free success, multiple procedure success, and pharmaceutically assisted success at longest follow-up were collated.ResultsFour studies performed pulmonary vein isolation alone (21%-22% success). Four studies performed pulmonary vein antrum ablation with isolation (PVAI; n = 2; 38%-40% success) or without confirmed isolation (PVA; n = 2; 37%-56% success). Ten studies performed linear ablation in addition to PVA (n = 5; 11%-74% success) or PVAI (n = 5; 38%-57% success). Three studies performed posterior wall box isolation (n = 3; 44%-50% success). Five studies performed complex fractionated atrial electrogram ablation (n = 5; 24%-63% success). Six studies performed complex fractionated atrial electrogram ablation as an adjunct to PVA (n = 2; 50%-51% success), PVAI (n = 3; 36%-61% success), or PVAI and linear (n = 1; 68% success) ablation. Five studies performed the stepwise ablation approach (38%-62% success).ConclusionThe variation in success within and between techniques suggests that the optimal ablation technique for long-standing persistent AF is unclear. Nevertheless, long-standing persistent AF can be effectively treated with a composite of extensive index catheter ablation, repeat procedures, and/or pharmaceuticals.Anthony G. Brooks, Martin K. Stiles, Julien Laborderie, Dennis H. Lau, Pawel Kuklik, Nicholas J. Shipp, Li-Fern Hsu, and Prashanthan Sandershttp://www.elsevier.com/wps/find/journaldescription.cws_home/702333/description#descriptio

    A Genome-Wide Association Study of Sprint Performance in Elite Youth Football Players

    Get PDF
    Pickering, C, Suraci, B, Semenova, EA, Boulygina, EA, Kostryukova, ES, Kulemin, NA, Borisov, OV, Khabibova, SA, Larin, AK, Pavlenko, AV, Lyubaeva, EV, Popov, DV, Lysenko, EA, Vepkhvadze, TF, Lednev, EM, Leońska-Duniec, A, Pająk, B, Chycki, J, Moska, W, Lulińska-Kuklik, E, Dornowski, M, Maszczyk, A, Bradley, B, Kana-ah, A, Cięszczyk, P, Generozov, EV, and Ahmetov, II. A genome-wide association study of sprint performance in elite youth football players. J Strength Cond Res XX(X): 000-000, 2019-Sprint speed is an important component of football performance, with teams often placing a high value on sprint and acceleration ability. The aim of this study was to undertake the first genome-wide association study to identify genetic variants associated with sprint test performance in elite youth football players and to further validate the obtained results in additional studies. Using micro-array data (600 K-1.14 M single nucleotide polymorphisms [SNPs]) of 1,206 subjects, we identified 12 SNPs with suggestive significance after passing replication criteria. The polymorphism rs55743914 located in the PTPRK gene was found as the most significant for 5-m sprint test (p = 7.7 × 10). Seven of the discovered SNPs were also associated with sprint test performance in a cohort of 126 Polish women, and 4 were associated with power athlete status in a cohort of 399 elite Russian athletes. Six SNPs were associated with muscle fiber type in a cohort of 96 Russian subjects. We also examined genotype distributions and possible associations for 16 SNPs previously linked with sprint performance. Four SNPs (AGT rs699, HSD17B14 rs7247312, IGF2 rs680, and IL6 rs1800795) were associated with sprint test performance in this cohort. In addition, the G alleles of 2 SNPs in ADRB2 (rs1042713 & rs1042714) were significantly over-represented in these players compared with British and European controls. These results suggest that there is a genetic influence on sprint test performance in footballers, and identifies some of the genetic variants that help explain this influence

    Kolmogorov Complexity of Coronary Sinus Atrial Electrograms Before Ablation Predicts Termination of Atrial Fibrillation After Pulmonary Vein Isolation

    No full text
    Atrial fibrillation (AF) is related to a very complex local electrical activity reflected in the rich morphology of intracardiac electrograms. The link between electrogram complexity and efficacy of the catheter ablation is unclear. We test the hypothesis that the Kolmogorov complexity of a single atrial bipolar electrogram recorded during AF within the coronary sinus (CS) at the beginning of the catheter ablation may predict AF termination directly after pulmonary vein isolation (PVI). The study population consisted of 26 patients for whom 30 s baseline electrograms were recorded. In all cases PVI was performed. If AF persisted after PVI, ablation was extended beyond PVs. Kolmogorov complexity estimated by Lempel&ndash;Ziv complexity and the block decomposition method was calculated and compared with other measures: Shannon entropy, AF cycle length, dominant frequency, regularity, organization index, electrogram fractionation, sample entropy and wave morphology similarity index. A 5 s window length was chosen as optimal in calculations. There was a significant difference in Kolmogorov complexity between patients with AF termination directly after PVI compared to patients undergoing additional ablation (p &lt; 0.01). No such difference was seen for remaining complexity parameters. Kolmogorov complexity of CS electrograms measured at baseline before PVI can predict self-termination of AF directly after PVI

    Far-field effect in unipolar electrograms revisited: High-density mapping of atrial fibrillation in humans

    No full text
    Unipolar electrogram can detect local as well as remote electrical activity of the heart. Information on how the amplitude and morphology of the recorded signal changes with the distance from the source tissue undergoing depolarization can help to better understand unipolar electrograms fractionation and provide insights into the passive conduction properties of the atrial tissue. Ten second unipolar atrial fibrillation (AF) electrograms were recorded using high-density electrode array from the posterior left atrium (LA) and right atrium (RA) of 19 (8 persistent - PERS & 11 paroxysmal - PAF) AF patients undergoing cardiac surgery. Conduction along lines of conduction block was detected in the recorded activation patterns by a proposed automated algorithm. Changes of the amplitude of the unipolar electrogram with increasing distance from the conduction blocks were assessed and compared to predictions of a theoretical model. For each recording, the median far-field decay space constant (FF0.5) was calculated. Overall, we found a significant difference between FF0.5 for patients with paroxysmal and persistent AF. Estimation of maximum FF0.5 from both RA and LA resulted in a mean FF0.5 of 1.5±0.2 mm for PERS patients and 2.1±0.6 mm for PAF patients (p=0.03). Moreover, detected conduction blocks demonstrated high spatial organization and appeared in distinctive areas of the mapped area in all patients, regardless of the type of AF, while the total number of detected block lines was higher in PERS patients
    • …
    corecore