5,717 research outputs found

    On the impact of the magnitude of Interstellar pressure on physical properties of Molecular Cloud

    Full text link
    Recently reported variations in the typical physical properties of Galactic and extra-Galactic molecular clouds (MCs), and in their ability to form stars have been attributed to local variations in the magnitude of interstellar pressure. Inferences from these surveys have called into question two long-standing beliefs that the MCs : 1 are Virialised entities and (2) have approximately constant surface density i.e., the validity of the Larson's third law. In this work we invoke the framework of cloud-formation via collisions between warm gas flows. Post-collision clouds forming in these realisations cool rapidly and evolve primarily via the interplay between the Non-linear Thin Shell Instability (NTSI), and the self-gravity. Over the course of these simulations we traced the temporal evolution of the surface density of the assembled clouds, the fraction of dense gas, the distribution of gas column density (NPDF), and the Virial nature of the assembled clouds. We conclude, these physical properties of MCs not only exhibit temporal variation, but their respective peak-magnitude also increases in proportion with the magnitude of external pressure, PextP_{ext}. The velocity dispersion in assembled clouds appears to follow the power-law, σgasPext0.23\sigma_{gas}\propto P_{ext}^{0.23}. Also, the power-law tail at higher densities becomes shallower with increasing magnitude of external pressure, for magnitudes, Pext/kB107P_{ext}/k_{B}\lesssim 10^{7} K cm3^{-3}, at higher magnitudes such as those typically found in the Galactic CMZ (Pext/kB>107P_{ext}/k_{B} > 10^{7} K cm3^{-3}), the power-law shows significant steepening. Thus while our results are broadly consistent with inferences from various recent observational surveys, it appears, MCs hardly exhibit a unique set of properties, but rather a wide variety, that can be reconciled with a range of magnitudes of pressure between 104^{4} K cm3^{-3} - 108^{8} K cm3^{-3}.Comment: 20 pages, 11 Figures, 1 Table, To appear in Monthly Notice of the RA

    On the star-forming ability of Molecular Clouds

    Full text link
    The star-forming ability of a molecular cloud depends on the fraction of gas it can cycle into the dense-phase. Consequently, one of the crucial questions in reconciling star-formation in clouds is to understand the factors that control this process. While it is widely accepted that the variation in ambient conditions can alter significantly the ability of a cloud to spawn stars, the observed variation in the star-formation rate in nearby clouds that experience similar ambient conditions, presents an interesting question. In this work we attempted to reconcile this variation within the paradigm of colliding flows. To this end we develop self-gravitating, hydrodynamic realisations of identical flows, but allowed to collide off-centre. Typical observational diagnostics such as the gas-velocity dispersion, the fraction of dense-gas, the column density distribution ({\small N-PDF}), the distribution of gas mass as a function of KK-band extinction and the strength of compressional/solenoidal modes in the post-collision cloud were deduced for different choices of the impact parameter of collision. We find that a strongly sheared cloud is terribly inefficient in cycling gas into the dense phase and that such a cloud can possibly reconcile the sluggish nature of star-formation reported for some clouds. Within the paradigm of cloud-formation via colliding flows this is possible in case of flows colliding with a relatively large impact parameter. We conclude that compressional modes - though probably essential - are insufficient to ensure a relatively higher star-formation efficiency in a cloud.Comment: 12 pages, 8 figures; To appear in MNRA

    The Fermi LAT detection of magnetar-like pulsar PSR J1846-0258 at high-energy gamma-rays

    Full text link
    We report the detection of the pulsed signal of the radio-quiet magnetar-like pulsar PSR J1846-0258 in the high-energy \gr-ray data of the Fermi Large Area Telescope (Fermi LAT). We produced phase-coherent timing models exploiting RXTE PCA and Swift XRT monitoring data for the post- (magnetar-like) outburst period from 2007 August 28 to 2016 September 4, with independent verification using INTEGRAL ISGRI and Fermi GBM data. Phase-folding barycentric arrival times of selected Fermi LAT events from PSR J1846-0258, resulted in a 4.2 sigma detection (30--100 MeV) of a broad pulse consistent in shape and aligned in phase with the profiles that we measured with Swift XRT (2.5--10 keV), INTEGRAL ISGRI (20--150 keV) and Fermi GBM (20--300 keV). The pulsed flux (30--100 MeV) is (3.91 +/- 0.97)E-9 photons/(cm^2 s MeV). Declining significances of the INTEGRAL ISGRI 20--150 keV pulse profiles suggest fading of the pulsed hard X-ray emission during the post-outburst epochs. We revisited with greatly improved statistics the timing and spectral characteristics of PSR B1509-58 as measured with the Fermi LAT. The broad-band pulsed emission spectra (from 2 keV up to GeV energies) of PSR J1846-0258 and PSR B1509-58 can be accurately described with similarly curved shapes, with maximum luminosities at 3.5 +/- 1.1 MeV (PSR J1846-0258) and 2.23 +/- 0.11 MeV (PSR B1509-58). We discuss possible explanations for observational differences between Fermi LAT detected pulsars that reach maximum luminosities at GeV energies, like the second magnetar-like pulsar PSR J1119-6127, and pulsars with maximum luminosities at MeV energies, which might be due to geometric differences rather than exotic physics in high-B fields.Comment: 13 pages, 8 figures, accepted by MNRAS on 2017 November 3

    On the observability of bow shocks of Galactic runaway OB stars

    Full text link
    Massive stars that have been ejected from their parent cluster and supersonically sailing away through the interstellar medium (ISM) are classified as exiled. They generate circumstellar bow shock nebulae that can be observed. We present two-dimensional, axisymmetric hydrodynamical simulations of a representative sample of stellar wind bow shocks from Galactic OB stars in an ambient medium of densities ranging from n_ISM=0.01 up to 10.0/cm3. Independently of their location in the Galaxy, we confirm that the infrared is the most appropriated waveband to search for bow shocks from massive stars. Their spectral energy distribution is the convenient tool to analyze them since their emission does not depend on the temporary effects which could affect unstable, thin-shelled bow shocks. Our numerical models of Galactic bow shocks generated by high-mass (~40 Mo) runaway stars yield Hα\alpha fluxes which could be observed by facilities such as the SuperCOSMOS H-Alpha Survey. The brightest bow shock nebulae are produced in the denser regions of the ISM. We predict that bow shocks in the field observed at Ha by means of Rayleigh-sensitive facilities are formed around stars of initial mass larger than about 20 Mo. Our models of bow shocks from OB stars have the emission maximum in the wavelength range 3 <= lambda <= 50 micrometer which can be up to several orders of magnitude brighter than the runaway stars themselves, particularly for stars of initial mass larger than 20 Mo.Comment: 13 pages, 12 figures. Accepted to MNRAS (2016

    McRoy, Burton B Oral History Interview: Longtime Residents of Macatawa Park

    Get PDF

    Evans, Robert O Oral History Interview: Longtime Residents of Macatawa Park

    Get PDF

    Boshka, J M Oral History Interview: Longtime Residents of Macatawa Park

    Get PDF

    A high-resolution solar spectrometer for air-borne infrared observations, number 126

    Get PDF
    High resolution solar spectrometer for CV-990 aircraft infrared observation
    corecore