51 research outputs found

    Management of agricultural soils for greenhouse gas mitigation: Learning from a case study in NE Spain

    Get PDF
    A portfolio of agricultural practices is now available that can contribute to reaching European mitigation targets. Among them, the management of agricultural soils has a large potential for reducing GHG emissions or sequestering carbon. Many of the practices are based on well tested agronomic and technical know-how, with proven benefits for farmers and the environment. A suite of practices has to be used since none of the practices can provide a unique solution. However, there are limitations in the process of policy development: (a) agricultural activities are based on biological processes and thus, these practices are location specific and climate, soils and crops determine their agronomic potential; (b) since agriculture sustains rural communities, the costs and potential for implementation have also to be regionally evaluated and (c) the aggregated regional potential of the combination of practices has to be defined in order to inform abatement targets. We believe that, when implementing mitigation practices, three questions are important: Are they cost-effective for farmers? Do they reduce GHG emissions? What policies favour their implementation? This study addressed these questions in three sequential steps. First, mapping the use of representative soil management practices in the European regions to provide a spatial context to upscale the local results. Second, using a Marginal Abatement Cost Curve (MACC) in a Mediterranean case study (NE Spain) for ranking soil management practices in terms of their cost-effectiveness. Finally, using a wedge approach of the practices as a complementary tool to link science to mitigation policy. A set of soil management practices was found to be financially attractive for Mediterranean farmers, which in turn could achieve significant abatements (e.g., 1.34 MtCO2e in the case study region). The quantitative analysis was completed by a discussion of potential farming and policy choices to shape realistic mitigation policy at European regional level

    Biogeochemical cycles and biodiversity as key drivers of ecosystem services provided by soils

    Get PDF
    Soils play a pivotal role in major global biogeochemical cycles (carbon, nutrient, and water), while hosting the largest diversity of organisms on land. Because of this, soils deliver fundamental ecosystem services, and management to change a soil process in support of one ecosystem service can either provide co-benefits to other services or result in trade-offs. In this critical review, we report the state-of-the-art understanding concerning the biogeochemical cycles and biodiversity in soil, and relate these to the provisioning, regulating, supporting, and cultural ecosystem services which they underpin. We then outline key knowledge gaps and research challenges, before providing recommendations for management activities to support the continued delivery of ecosystem services from soils. We conclude that, although soils are complex, there are still knowledge gaps, and fundamental research is still needed to better understand the relationships between different facets of soils and the array of ecosystem services they underpin, enough is known to implement best practices now. There is a tendency among soil scientists to dwell on the complexity and knowledge gaps rather than to focus on what we do know and how this knowledge can be put to use to improve the delivery of ecosystem services. A significant challenge is to find effective ways to share knowledge with soil managers and policy makers so that best management can be implemented. A key element of this knowledge exchange must be to raise awareness of the ecosystems services underpinned by soils and thus the natural capital they provide. We know enough to start moving in the right direction while we conduct research to fill in our knowledge gaps. The lasting legacy of the International Year of Soils in 2015 should be for soil scientists to work together with policy makers and land managers to put soils at the centre of environmental policy making and land management decisions.</p

    Adapting to climate change in The Netherlands: an inventory of climate adaptation options and ranking of alternatives

    Get PDF
    In many countries around the world impacts of climate change are assessed and adaptation options identified. We describe an approach for a qualitative and quantitative assessment of adaptation options to respond to climate change in the Netherlands. The study introduces an inventory and ranking of adaptation options based on stakeholder analysis and expert judgement, and presents some estimates of incremental costs and benefits. The qualitative assessment focuses on ranking and prioritisation of adaptation options. Options are selected and identified and discussed by stakeholders on the basis of a sectoral approach, and assessed with respect to their importance, urgency and other characteristics by experts. The preliminary quantitative assessment identifies incremental costs and benefits of adaptation options. Priority ranking based on a weighted sum of criteria reveals that in the Netherlands integrated nature and water management and risk based policies rank high, followed by policies aiming at 'climate proof' housing and infrastructure

    The science base of a strategic research agenda: executive summary.

    Get PDF
    Identifying the challenges around soil organic carbon sequestration in agriculture. Questionnaire. Twelve Testable Hypotheses for Soil Organic Carbon Sequestration in Agriculture. Key research and innovation advances.European Union's Horizon 2020 Research and Innovation Programme Grant Agreement No 774378. Coordination of International Research Cooperation on Soil Carbon Sequestration in Agriculture

    Climate change goes underground: effects of elevated atmospheric CO2 on microbial community structure and activities in the rhizosphere.

    Get PDF
    General concern about climate change has led to growing interest in the responses of terrestrial ecosystems to elevated concentrations of CO2 in the atmosphere. Experimentation during the last two to three decades using a large variety of approaches has provided sufficient information to conclude that enrichment of atmospheric CO2 may have severe impact on terrestrial ecosystems. This impact is mainly due to the changes in the organic C dynamics as a result of the effects of elevated CO2 on the primary source of organic C in soil, i.e., plant photosynthesis. As the majority of life in soil is heterotrophic and dependent on the input of plant-derived organic C, the activity and functioning of soil organisms will greatly be influenced by changes in the atmospheric CO2 concentration. In this review, we examine the current state of the art with respect to effects of elevated atmospheric CO2 on soil microbial communities, with a focus on microbial community structure. On the basis of the existing information, we conclude that the main effects of elevated atmospheric CO2 on soil microbiota occur via plant metabolism and root secretion, especially in C3 plants, thereby directly affecting the mycorrhizal, bacterial, and fungal communities in the close vicinity of the root. There is little or no direct effect on the microbial community of the bulk soil. In particular, we have explored the impact of these changes on rhizosphere interactions and ecosystem processes, including food web interactions
    • 

    corecore