135 research outputs found

    \b{eta}-delayed three-proton decay of 31Ar

    Full text link
    The beta decay of 31Ar, produced by fragmentation of a 36Ar beam at 880 MeV/nucleon, was investigated. Identified ions of 31Ar were stopped in a gaseous time projection chamber with optical readout allowing to record decay events with emission of protons. In addition to \b{eta}-delayed emission of one and two protons we have clearly observed the beta-delayed three-proton branch. The branching ratio for this channel in 31Ar is found to be 0.07(2)%.Comment: 5 pages, 3 figures, submitted to Physical Rev.

    The conserved histone chaperone LIN-53 is required for normal lifespan and maintenance of muscle integrity in Caenorhabditis elegans.

    Get PDF
    Whether extension of lifespan provides an extended time without health deteriorations is an important issue for human aging. However, to which degree lifespan and aspects of healthspan regulation might be linked is not well understood. Chromatin factors could be involved in linking both aging aspects, as epigenetic mechanisms bridge regulation of different biological processes. The epigenetic factor LIN-53 (RBBP4/7) associates with different chromatin-regulating complexes to safeguard cell identities in Caenorhabditis elegans as well as mammals, and has a role in preventing memory loss and premature aging in humans. We show that LIN-53 interacts with the nucleosome remodeling and deacetylase (NuRD) complex in C. elegans muscles to ensure functional muscles during postembryonic development and in adults. While mutants for other NuRD members show a normal lifespan, animals lacking LIN-53 die early because LIN-53 depletion affects also the histone deacetylase complex Sin3, which is required for a normal lifespan. To determine why lin-53 and sin-3 mutants die early, we performed transcriptome and metabolomic analysis revealing that levels of the disaccharide trehalose are significantly decreased in both mutants. As trehalose is required for normal lifespan in C. elegans, lin-53 and sin-3 mutants could be rescued by either feeding with trehalose or increasing trehalose levels via the insulin/IGF1 signaling pathway. Overall, our findings suggest that LIN-53 is required for maintaining lifespan and muscle integrity through discrete chromatin regulatory mechanisms. Since both LIN-53 and its mammalian homologs safeguard cell identities, it is conceivable that its implication in lifespan regulation is also evolutionarily conserved

    Measurements of π±\pi^\pm, K±^\pm, p and pˉ\bar{\textrm{p}} spectra in proton-proton interactions at 20, 31, 40, 80 and 158 GeV/c with the NA61/SHINE spectrometer at the CERN SPS

    Get PDF
    Measurements of inclusive spectra and mean multiplicities of π±\pi^\pm, K±^\pm, p and pˉ\bar{\textrm{p}} produced in inelastic p+p interactions at incident projectile momenta of 20, 31, 40, 80 and 158 GeV/c (s=\sqrt{s} = 6.3, 7.7, 8.8, 12.3 and 17.3 GeV, respectively) were performed at the CERN Super Proton Synchrotron using the large acceptance NA61/SHINE hadron spectrometer. Spectra are presented as function of rapidity and transverse momentum and are compared to predictions of current models. The measurements serve as the baseline in the NA61/SHINE study of the properties of the onset of deconfinement and search for the critical point of strongly interacting matter

    Multiplicity and transverse momentum fluctuations in inelastic proton-proton interactions at the CERN Super Proton Synchrotron

    Get PDF
    Measurements of multiplicity and transverse momentum fluctuations of charged particles were performed in inelastic p+p interactions at 20, 31, 40, 80 and 158 GeV/c beam momentum. Results for the scaled variance of the multiplicity distribution and for three strongly intensive measures of multiplicity and transverse momentum fluctuations \$\Delta[P_{T},N]\$, \$\Sigma[P_{T},N]\$ and \$\Phi_{p_T}\$ are presented. For the first time the results on fluctuations are fully corrected for experimental biases. The results on multiplicity and transverse momentum fluctuations significantly deviate from expectations for the independent particle production. They also depend on charges of selected hadrons. The string-resonance Monte Carlo models EPOS and UrQMD do not describe the data. The scaled variance of multiplicity fluctuations is significantly higher in inelastic p+p interactions than in central Pb+Pb collisions measured by NA49 at the same energy per nucleon. This is in qualitative disagreement with the predictions of the Wounded Nucleon Model. Within the statistical framework the enhanced multiplicity fluctuations in inelastic p+p interactions can be interpreted as due to event-by-event fluctuations of the fireball energy and/or volume.Comment: 18 pages, 12 figure

    Measurements of π±\pi^\pm, K±K^\pm, KS0K^0_S, Λ\Lambda and proton production in proton-carbon interactions at 31 GeV/cc with the NA61/SHINE spectrometer at the CERN SPS

    Get PDF
    Measurements of hadron production in p+C interactions at 31 GeV/c are performed using the NA61/ SHINE spectrometer at the CERN SPS. The analysis is based on the full set of data collected in 2009 using a graphite target with a thickness of 4% of a nuclear interaction length. Inelastic and production cross sections as well as spectra of π±\pi^\pm, K±K^\pm, p, KS0K^0_S and Λ\Lambda are measured with high precision. These measurements are essential for improved calculations of the initial neutrino fluxes in the T2K long-baseline neutrino oscillation experiment in Japan. A comparison of the NA61/SHINE measurements with predictions of several hadroproduction models is presented.Comment: v1 corresponds to the preprint CERN-PH-EP-2015-278; v2 matches the final published versio

    Misregulation of Scm3p/HJURP Causes Chromosome Instability in Saccharomyces cerevisiae and Human Cells

    Get PDF
    The kinetochore (centromeric DNA and associated proteins) is a key determinant for high fidelity chromosome transmission. Evolutionarily conserved Scm3p is an essential component of centromeric chromatin and is required for assembly and function of kinetochores in humans, fission yeast, and budding yeast. Overexpression of HJURP, the mammalian homolog of budding yeast Scm3p, has been observed in lung and breast cancers and is associated with poor prognosis; however, the physiological relevance of these observations is not well understood. We overexpressed SCM3 and HJURP in Saccharomyces cerevisiae and HJURP in human cells and defined domains within Scm3p that mediate its chromosome loss phenotype. Our results showed that the overexpression of SCM3 (GALSCM3) or HJURP (GALHJURP) caused chromosome loss in a wild-type yeast strain, and overexpression of HJURP led to mitotic defects in human cells. GALSCM3 resulted in reduced viability in kinetochore mutants, premature separation of sister chromatids, and reduction in Cse4p and histone H4 at centromeres. Overexpression of CSE4 or histone H4 suppressed chromosome loss and restored levels of Cse4p at centromeres in GALSCM3 strains. Using mutant alleles of scm3, we identified a domain in the N-terminus of Scm3p that mediates its interaction with CEN DNA and determined that the chromosome loss phenotype of GALSCM3 is due to centromeric association of Scm3p devoid of Cse4p/H4. Furthermore, we determined that similar to other systems the centromeric association of Scm3p is cell cycle regulated. Our results show that altered stoichiometry of Scm3p/HJURP, Cse4p, and histone H4 lead to defects in chromosome segregation. We conclude that stringent regulation of HJURP and SCM3 expression are critical for genome stability

    Measurements of ππ±^{±} , KK±^{±}, pp and pˉ\bar{p} spectra in proton-proton interactions at 20, 31, 40, 80 and 158 GeV/cc with the NA61/SHINE spectrometer at the CERN SPS

    Get PDF
    Measurements of inclusive spectra and mean multiplicities of π ± π± , K ± ± , p and p ¯ p¯ produced in inelastic p + p interactions at incident projectile momenta of 20, 31, 40, 80 and 158 GeV /c GeV /c (s √ = s= 6.3, 7.7, 8.8, 12.3 and 17.3 GeV GeV , respectively) were performed at the CERN Super Proton Synchrotron using the large acceptance NA61/SHINE hadron spectrometer. Spectra are presented as function of rapidity and transverse momentum and are compared to predictions of current models. The measurements serve as the baseline in the NA61/SHINE study of the properties of the onset of deconfinement and search for the critical point of strongly interacting matter

    Measurements of π±\pi^\pm, K±K^\pm, pp and pˉ\bar{p} spectra in 40^{40}Ar+45^{45}Sc collisions at 13AA to 150AA GeV/cc

    Full text link
    The NA61/SHINE experiment at the CERN Super Proton Synchrotron studies the onset of deconfinement in strongly interacting matter through a beam energy scan of particle production in collisions of nuclei of varied sizes. This paper presents results on inclusive double-differential spectra, transverse momentum and rapidity distributions and mean multiplicities of π±\pi^\pm, K±K^\pm, pp and pˉ\bar{p} produced in 40^{40}Ar+45^{45}Sc collisions at beam momenta of 13AA, 19AA, 30AA, 40AA, 75AA and 150AA GeV/cc. The analysis uses the 10% most central collisions, where the observed forward energy defines centrality. The energy dependence of the K±K^\pm/π±\pi^\pm ratios as well as of inverse slope parameters of the K±K^\pm transverse mass distributions are placed in between those found in inelastic pp+pp and central Pb+Pb collisions. The results obtained here establish a system-size dependence of hadron production properties that so far cannot be explained either within statistical (SMES, HRG) or dynamical (EPOS, UrQMD, PHSD, SMASH) models

    KS0K_S^0 meson production in inelastic p+p interactions at 31, 40 and 80 GeV/c beam momentum measured by NA61/SHINE at the CERN SPS

    Full text link
    Measurements of KS0K_S^0 meson production via its π+π\pi^{+} \pi^{-} decay mode in inelastic p+p\textit{p+p} interactions at incident projectile momenta of 31, 40 and 80 GeV/cc (sNN=7.7,8.8\sqrt{s_{NN}}=7.7, 8.8 and 12.312.3 GeV, respectively) are presented. The data were recorded by the NA61/SHINE spectrometer at the CERN Super Proton Synchrotron. Double-differential distributions were obtained in transverse momentum and rapidity. The mean multiplicities of KS0K_S^0 mesons were determined to be (5.95±0.19(stat)±0.22(sys))×102(5.95 \pm 0.19 (stat) \pm 0.22 (sys)) \times 10^{-2} at 31 GeV/cc, (7.61±0.13(stat)±0.31(sys))×102(7.61 \pm 0.13 (stat) \pm 0.31 (sys)) \times 10^{-2} at 40 GeV/cc and (11.58±0.12(stat)±0.37(sys))×102(11.58 \pm 0.12 (stat) \pm 0.37 (sys)) \times 10^{-2} at 80 GeV/cc. The results on KS0K^{0}_{S} production are compared with model calculations (Epos1.99, SMASH 2.0 and PHSD) as well as with published data from other experiments.Comment: arXiv admin note: substantial text overlap with arXiv:2106.0753
    corecore