178 research outputs found

    A2BE: Accountable Attribute-Based Encryption for Abuse Free Access Control

    Get PDF
    As a recently proposed public key primitive, attribute-based encryption (ABE) (including Ciphertext-policy ABE (CP-ABE) and Key-policy ABE (KP-ABE)) is a highly promising tool for secure access control. In this paper, the issue of key abuse in ABE is formulated and addressed. Two kinds of key abuse problems are considered, i) illegal key sharing among colluding users and ii) misbehavior of the semi-trusted attribute authority including illegal key (re-)distribution. Both problems are extremely important as in an ABE-based access control system, the attribute private keys directly imply users\u27 privileges to the protected resources. To the best knowledge of ours, such key abuse problems exist in all current ABE schemes as the attribute private keys assigned to the users are never designed to be linked to any user specific information except the commonly shared user attributes. To be concrete, we focus on the prevention of key abuse in CP-ABE in this paper \footnote{Our technique can easily be extended to KP-ABE as well.}. The notion of accountable CP-ABE (CP-A2^2BE, in short) is first proposed to prevent illegal key sharing among colluding users. The accountability for user is achieved by embedding additional user specific information in the attribute private key issued to the user. To further obtain accountability for the attribute authority as well, the notion of strong CP-A2^2BE is proposed, allowing each attribute private key to be linked to the corresponding user\u27s secret that is unknown to the attribute authority. We show how to construct such a strong CP-A2^2BE and prove its security based on the computational Diffie-Hellman assumption. Finally, we show how to utilize the new technique to solve some open problems existed in the previous accountable identity-based encryption schemes

    Removal of Pb(II) from aqueous solution by a zeolite–nanoscale zero-valent iron composite

    Get PDF
    The effectiveness of nanoscale zero-valent iron (nZVI) to remove heavy metals from water is reduced by its low durability, poor mechanical strength, and tendency to form aggregates. A composite of zeolite and nanoscale zero-valent iron (Z–nZVI) overcomes these problems and shows good potential to remove Pb from water. FTIR spectra support nZVI loading onto the zeolite and reduced Fe0 oxidation in the Z–nZVI composite. Scanning electron micrographs show aggregation was eliminated and transmission electron micrographs show well-dispersed nZVI in chain-like structures within the zeolite matrix. The mean surface area of the composite was 80.37 m2/g, much greater than zeolite (1.03 m2/g) or nZVI (12.25 m2/g) alone, as determined by BET-N2 measurement. More than 96% of the Pb(II) was removed from 100 mL of solution containing 100 mg Pb(II)/L within 140 min of mixing with 0.1 g Z–nZVI. Tests with solution containing 1000 mg Pb(II)/L suggested that the capacity of the Z–nZVI is about 806 mg Pb(II)/g. Energy-dispersive X-ray spectroscopy showed the presence of Fe in the composite; X-ray diffraction confirmed formation and immobilization of Fe0 and subsequent sorption and reduction of some of the Pb(II) to Pb0. The low quantity of Pb(II) recovered in water-soluble and Ca(NO3)2-extractable fractions indicate low bioavailability of the Pb(II) removed by the composite. Results support the potential use of the Z–nZVI composite in permeable reactive barriers

    Removal of Pb(II) from aqueous solution by a zeolite–nanoscale zero-valent iron composite

    Get PDF
    The effectiveness of nanoscale zero-valent iron (nZVI) to remove heavy metals from water is reduced by its low durability, poor mechanical strength, and tendency to form aggregates. A composite of zeolite and nanoscale zero-valent iron (Z–nZVI) overcomes these problems and shows good potential to remove Pb from water. FTIR spectra support nZVI loading onto the zeolite and reduced Fe0 oxidation in the Z–nZVI composite. Scanning electron micrographs show aggregation was eliminated and transmission electron micrographs show well-dispersed nZVI in chain-like structures within the zeolite matrix. The mean surface area of the composite was 80.37 m2/g, much greater than zeolite (1.03 m2/g) or nZVI (12.25 m2/g) alone, as determined by BET-N2 measurement. More than 96% of the Pb(II) was removed from 100 mL of solution containing 100 mg Pb(II)/L within 140 min of mixing with 0.1 g Z–nZVI. Tests with solution containing 1000 mg Pb(II)/L suggested that the capacity of the Z–nZVI is about 806 mg Pb(II)/g. Energy-dispersive X-ray spectroscopy showed the presence of Fe in the composite; X-ray diffraction confirmed formation and immobilization of Fe0 and subsequent sorption and reduction of some of the Pb(II) to Pb0. The low quantity of Pb(II) recovered in water-soluble and Ca(NO3)2-extractable fractions indicate low bioavailability of the Pb(II) removed by the composite. Results support the potential use of the Z–nZVI composite in permeable reactive barriers

    Characterization and Online Detection of Surfactin Isomers Based on HPLC-MSn Analyses and Their Inhibitory Effects on the Overproduction of Nitric Oxide and the Release of TNF-α and IL-6 in LPS-Induced Macrophages

    Get PDF
    A rapid method for characterization and online detection of surfactin isomers was developed based on HPLC-MSn (n = 1, 2, 3) analyses, and many surfactin isomers were detected and characterized from the bioactive fraction of the mangrove bacterium Bacillus sp. Inhibitory activities of surfactin isomers on the overproduction of nitric oxide and the release of TNF-α and IL-6 in LPS-induced macrophages were systematically investigated. It was revealed that the surfactin isomers showed strong inhibitory properties on the overproduction of nitric oxide and the release of IL-6 on LPS-induced murine macrophage cell RAW264.7 with IC50 values ranging from 1.0 to 7.0 ΌM. Structure-activity relationship (SAR) studies revealed that the existence of the free carboxyl group in the structure of surfactin isomers was crucial. These findings will be very helpful for the development of this novel kind of natural product as new anti-inflammatory agents

    A Case of Cutaneous Bronchogenic Cyst Presenting with Lymphoid Follicles

    Get PDF
    Cutaneous bronchogenic cysts are rare, and stem from developmental abnormalities of the tracheobronchial tree. The condition is often misdiagnosed clinically, with the correct diagnosis usually established by histopathologic examination. Published reports of bronchogenic or branchial anomalies are increasing, and the traditional defining characteristics of location and histopathology are proving to be less reliable for the identification of cutaneous bronchogenic cysts. In this report, we describe a case of a cutaneous bronchogenic cyst that presented with unusual histologic features, and was associated with several lymphoid follicles

    Human Solid Tumor Xenografts in Immunodeficient Mice Are Vulnerable to Lymphomagenesis Associated with Epstein-Barr Virus

    Get PDF
    Xenografting primary human solid tumor tissue into immunodeficient mice is a widely used tool in studies of human cancer biology; however, care must be taken to prove that the tumors obtained recapitulate parent tissue. We xenografted primary human hepatocellular carcinoma (HCC) tumor fragments or bulk tumor cell suspensions into immunodeficient mice. We unexpectedly observed that 11 of 21 xenografts generated from 16 independent patient samples resembled lymphoid neoplasms rather than HCC. Immunohistochemistry and flow cytometry analyses revealed that the lymphoid neoplasms were comprised of cells expressing human CD45 and CD19/20, consistent with human B lymphocytes. In situ hybridization was strongly positive for Epstein-Barr virus (EBV) encoded RNA. Genomic analysis revealed unique monoclonal or oligoclonal immunoglobulin heavy chain gene rearrangements in each B-cell neoplasm. These data demonstrate that the lymphoid neoplasms were EBV-associated human B-cell lymphomas. Analogous to EBV-associated lymphoproliferative disorders in immunocompromised humans, the human lymphomas in these HCC xenografts likely developed from reactivation of latent EBV in intratumoral passenger B lymphocytes following their xenotransplantation into immunodeficient recipient mice. Given the high prevalence of latent EBV infection in humans and the universal presence of B lymphocytes in solid tumors, this potentially confounding process represents an important pitfall of human solid tumor xenografting. This phenomenon can be recognized and avoided by routine phenotyping of primary tumors and xenografts with human leukocyte markers, and provides a compelling biological rationale for exclusion of these cells from human solid tumor xenotransplantation assays
    • 

    corecore