610 research outputs found

    Fine-suspended sediment and water budgets for a large, seasonally dry tropical catchment: Burdekin River catchment, Queensland, Australia

    Get PDF
    The Burdekin River catchment (~130,400 km2) is a seasonally dry tropical catchment located in north-east Queensland, Australia. It is the single largest source of suspended sediment to the Great Barrier Reef (GBR). Fine sediments are a threat to ecosystems on the GBR where they contribute to elevated turbidity (reduced light), sedimentation stress, and potential impacts from the associated nutrients. Suspended sediment data collected over a 5 year period were used to construct a catchment-wide sediment source and transport budget. The Bowen River tributary was identified as the major source of end-of-river suspended sediment export, yielding an average of 530 t km−2 yr−1 during the study period. Sediment trapping within a large reservoir (1.86 million ML) and the preferential transport of clays and fine silts downstream of the structure were also examined. The data reveal that the highest clay and fine silt loads—which are of most interest to environmental managers of the GBR—are not always sourced from areas that yield the largest total suspended sediment load (i.e., all size fractions). Our results demonstrate the importance of incorporating particle size into catchment sediment budget studies undertaken to inform management decisions to reduce downstream turbidity and sedimentation. Our data on sediment source, reservoir influence, and subcatchment and catchment yields will improve understandings of sediment dynamics in other tropical catchments, particularly those located in seasonally wet-dry tropical savannah/semiarid climates. The influence of climatic variability (e.g., drought/wetter periods) on annual sediment loads within large seasonally dry tropical catchments is also demonstrated by our data

    Many-body localization and thermalization in the full probability distribution function of observables

    Get PDF
    We investigate the relation between thermalization following a quantum quench and many-body localization in quasiparticle space in terms of the long-time full distribution function of physical observables. In particular, expanding on our recent work [E. Canovi {\em et al.}, Phys. Rev. B {\bf 83}, 094431 (2011)], we focus on the long-time behavior of an integrable XXZ chain subject to an integrability-breaking perturbation. After a characterization of the breaking of integrability and the associated localization/delocalization transition using the level spacing statistics and the properties of the eigenstates, we study the effect of integrability-breaking on the asymptotic state after a quantum quench of the anisotropy parameter, looking at the behavior of the full probability distribution of the transverse and longitudinal magnetization of a subsystem. We compare the resulting distributions with those obtained in equilibrium at an effective temperature set by the initial energy. We find that, while the long time distribution functions appear to always agree {\it qualitatively} with the equilibrium ones, {\it quantitative} agreement is obtained only when integrability is fully broken and the relevant eigenstates are diffusive in quasi-particle space.Comment: 18 pages, 11 figure

    Sampling re-design increases power to detect change in the Great Barrier Reef’s inshore water quality

    Get PDF
    Monitoring programs are fundamental to understanding the state and trend of aquatic ecosystems. Sampling designs are a crucial component of monitoring programs and ensure that measurements evaluate progress toward clearly stated management objectives, which provides a mechanism for adaptive management. Here, we use a well-established marine monitoring program for inshore water quality in the Great Barrier Reef (GBR), Australia to investigate whether a sampling re-design has increased the program’s capacity to meet its primary objectives. Specifically, we use bootstrap resampling to assess the change in statistical power to detect temporal water quality trends in a 15-year inshore marine water quality data set that includes data from both before and after the sampling re-design. We perform a comprehensive power analysis for six water quality analytes at four separate study areas in the GBR Marine Park and find that the sampling re-design (i) increased power to detect trends in 23 of the 24 analyte-study area combinations, and (ii) resulted in an average increase in power of 34% to detect increasing or decreasing trends in water quality analytes. This increase in power is attributed more to the addition of sampling locations than increasing the sampling rate. Therefore, the sampling re-design has substantially increased the capacity of the program to detect temporal trends in inshore marine water quality. Further improvements in sampling design need to focus on the program’s capability to reliably detect trends within realistic timeframes where inshore improvements to water quality can be expected to occur

    Manipulation and removal of defects in spontaneous optical patterns

    Full text link
    Defects play an important role in a number of fields dealing with ordered structures. They are often described in terms of their topology, mutual interaction and their statistical characteristics. We demonstrate theoretically and experimentally the possibility of an active manipulation and removal of defects. We focus on the spontaneous formation of two-dimensional spatial structures in a nonlinear optical system, a liquid crystal light valve under single optical feedback. With increasing distance from threshold, the spontaneously formed hexagonal pattern becomes disordered and contains several defects. A scheme based on Fourier filtering allows us to remove defects and to restore spatial order. Starting without control, the controlled area is progressively expanded, such that defects are swept out of the active area.Comment: 4 pages, 4 figure

    Valvulotomy of the great saphenous vein in ex situ non-reversed and in situ setting: a multicenter post-market study to assess the safety and efficacy of the AndraValvulotomeℱ”

    Get PDF
    Purpose To evaluate the safety and technical success of the AndraValvulotomeℱ device (Andramed GmbH, Reutlingen, Germany) in patients with peripheral arterial disease (PAD) requiring bypass surgery using the great saphenous vein (GSV) as graft. Methods This was a multicenter, post-market observational study conducted in 2021 in 11 German centers. Safety and efficacy data were prospectively collected and analyzed. Primary endpoints were the absence of device-related serious adverse events until 30 ± 7 days follow-up, the clinical efficacy of valvulotomy, which was defined as pulsatile blood flow in the bypass and the number of insufficiently destroyed vein valves. Secondary endpoints were the number of valvulotomy passages, the primary patency rate of the venous bypass (determined by a color-duplex sonography showing a normal blood flow through the bypass and absence of stenosis or occlusion), and the primary technical success defined as the absence of product-specific (serious) adverse events and clinical efficacy. Results Fifty-nine patients were enrolled. The mean age of the patients was 71 years (46–91), and 74.6% were males. The vein material used for bypass grafting had a median length of 47.5 cm (range 20–70 cm) with a median diameter of 5.0 mm (range 3–6 mm) and 4.0 mm (range 2–6 mm) in the proximal and distal segments, respectively. The technical success rate was 96.6%. The primary patency rate was 89.9% at 30 days follow-up. The clinical efficacy was rated as very good in 81% of patients, fair in 17%, and poor in 2%. Between 1 and 5 (average 2.9) valvulotome passages were performed. One product-related serious adverse event was recorded (bypass vein dissection). Conclusion The AndraValvulotomeℱ can be considered a safe and effective device to disrupt venous valves during in situ non-reversed bypass surgeries using GSV grafts in patients with PAD

    Identification of Arcanobacterium pyogenes isolated by post mortem examinations of a bearded dragon and a gecko by phenotypic and genotypic properties

    Get PDF
    The present study was designed to identify phenotypically and genotypically two Arcanobacterium (A.) pyogenes strains isolated by post mortem examinations of a bearded dragon and a gecko. The A. pyogenes strains showed the typical biochemical properties and displayed CAMP-like synergistic hemolytic activities with various indicator strains. The species identity could be confirmed genotypically by amplification and sequencing of the 16S rDNA gene and, as novel target gene, by sequencing of the beta subunit of RNA polymerase encoding gene rpoB, of both strains and of reference strains representing nine species of the genus Arcanobacterium. The species identity of the two A. pyogenes strains could additionally be confirmed by PCR mediated amplification of species specific parts of the 16S-23S rDNA intergenic spacer region, the pyolysin encoding gene plo and by amplification of the collagen-binding protein encoding gene cbpA. All these molecular targets might help to improve the future identification and further characterization of A. pyogenes which, as demonstrated in the present study, could also be isolated from reptile specimens

    Quantum Quench in the Transverse Field Ising chain I: Time evolution of order parameter correlators

    Full text link
    We consider the time evolution of order parameter correlation functions after a sudden quantum quench of the magnetic field in the transverse field Ising chain. Using two novel methods based on determinants and form factor sums respectively, we derive analytic expressions for the asymptotic behaviour of one and two point correlators. We discuss quenches within the ordered and disordered phases as well as quenches between the phases and to the quantum critical point. We give detailed account of both methods.Comment: 65 pages, 21 figures, some typos correcte

    Open-resorcinarenes, a new family of multivalent scaffolds

    Get PDF
    A new family of multivalent ligand platforms, the open-resorcinarenes, has been prepared in a straightforward two-step reaction. Modification of the core gives a range of topologically diverse scaffolds; functionalisation confirms the versatility of this approach, as shown through the formation of an octacalixarene array

    Western Indian Ocean marine and terrestrial records of climate variability: a review and new concepts on land-ocean interactions since AD 1660

    Get PDF
    We examine the relationship between three tropical and two subtropical western Indian Ocean coral oxygen isotope time series to surface air temperatures (SAT) and rainfall over India, tropical East Africa and southeast Africa. We review established relationships, provide new concepts with regard to distinct rainfall seasons, and mean annual temperatures. Tropical corals are coherent with SAT over western India and East Africa at interannual and multidecadal periodicities. The subtropical corals correlate with Southeast African SAT at periodicities of 16–30 years. The relationship between the coral records and land rainfall is more complex. Running correlations suggest varying strength of interannual teleconnections between the tropical coral oxygen isotope records and rainfall over equatorial East Africa. The relationship with rainfall over India changed in the 1970s. The subtropical oxygen isotope records are coherent with South African rainfall at interdecadal periodicities. Paleoclimatological reconstructions of land rainfall and SAT reveal that the inferred relationships generally hold during the last 350 years. Thus, the Indian Ocean corals prove invaluable for investigating land–ocean interactions during past centuries
    • 

    corecore