264 research outputs found

    New anti-perovskite-type Superconductor ZnNyNi3

    Full text link
    We have synthesized a new superconductor ZnNyNi3 with Tc ~3 K. The crystal structure has the same anti-perovskite-type such as MgCNi3 and CdCNi3. As far as we know, this is the third superconducting material in Ni-based anti-perovskite series. For this material, superconducting parameters, lower-critical field Hc1(0), upper-critical field Hc2(0), coherence length x(0), penetration depth l(0), and Gintzburg -Landau parameter k(0) have been experimentally determined.Comment: 13 pages, 3 figures, 1 tabl

    The Job Search Intensity Supply Curve: How Labor Market Conditions Affect Job Search Effort

    Get PDF
    During the Great Recession of 2007, unemployment reached nearly 10 percent and the ratio of unemployment to open positions (as measured by the Help Wanted OnLine Index) more than tripled. The weak labor market prompted an unprecedented extension in the length of time in which a claimant can collect unemployment insurance (UI) to 99 weeks, at an expense to date of $226.4 billion. While many claim that extending UI during a recession will reduce search intensity, the effect of weak labor market conditions on search remains a mystery. As a result, policymakers are in the dark as to whether UI extensions reduce already low search effort during recessions or perhaps decrease excessive search, which causes congestion in the labor market. At the same time, modelers of the labor market have little empirical justification for their assumptions on how search intensity changes over the business cycle. This paper develops a search model where the impact of macro labor market conditions on a worker’s search effort depends on whether these two factors are substitutes or complements in the job search process. Parameter estimates of the structural model using a sample of unemployment spells from the National Longitudinal Survey of Youth 1997 indicate that macro labor market conditions and individual search effort are complements and move together over the business cycle. The estimation also reveals that more risk-averse and less wealthy individuals exhibit less search effort

    Gain and Loss Learning Differentially Contribute to Life Financial Outcomes

    Get PDF
    Emerging findings imply that distinct neurobehavioral systems process gains and losses. This study investigated whether individual differences in gain learning and loss learning might contribute to different life financial outcomes (i.e., assets versus debt). In a community sample of healthy adults (n = 75), rapid learners had smaller debt-to-asset ratios overall. More specific analyses, however, revealed that those who learned rapidly about gains had more assets, while those who learned rapidly about losses had less debt. These distinct associations remained strong even after controlling for potential cognitive (e.g., intelligence, memory, and risk preferences) and socioeconomic (e.g., age, sex, ethnicity, income, education) confounds. Self-reported measures of assets and debt were additionally validated with credit report data in a subset of subjects. These findings support the notion that different gain and loss learning systems may exert a cumulative influence on distinct life financial outcomes

    Ideal Spin Filters: Theoretical Study of Electron Transmission Through Ordered and Disordered Interfaces Between Ferromagnetic Metals and Semiconductors

    Full text link
    It is predicted that certain atomically ordered interfaces between some ferromagnetic metals (F) and semiconductors (S) should act as ideal spin filters that transmit electrons only from the majority spin bands or only from the minority spin bands of the F to the S at the Fermi energy, even for F with both majority and minority bands at the Fermi level. Criteria for determining which combinations of F, S and interface should be ideal spin filters are formulated. The criteria depend only on the bulk band structures of the S and F and on the translational symmetries of the S, F and interface. Several examples of systems that meet these criteria to a high degree of precision are identified. Disordered interfaces between F and S are also studied and it is found that intermixing between the S and F can result in interfaces with spin anti-filtering properties, the transmitted electrons being much less spin polarized than those in the ferromagnetic metal at the Fermi energy. A patent application based on this work has been commenced by Simon Fraser University.Comment: RevTeX, 12 pages, 5 figure

    The Affective Impact of Financial Skewness on Neural Activity and Choice

    Get PDF
    Few finance theories consider the influence of “skewness” (or large and asymmetric but unlikely outcomes) on financial choice. We investigated the impact of skewed gambles on subjects' neural activity, self-reported affective responses, and subsequent preferences using functional magnetic resonance imaging (FMRI). Neurally, skewed gambles elicited more anterior insula activation than symmetric gambles equated for expected value and variance, and positively skewed gambles also specifically elicited more nucleus accumbens (NAcc) activation than negatively skewed gambles. Affectively, positively skewed gambles elicited more positive arousal and negatively skewed gambles elicited more negative arousal than symmetric gambles equated for expected value and variance. Subjects also preferred positively skewed gambles more, but negatively skewed gambles less than symmetric gambles of equal expected value. Individual differences in both NAcc activity and positive arousal predicted preferences for positively skewed gambles. These findings support an anticipatory affect account in which statistical properties of gambles—including skewness—can influence neural activity, affective responses, and ultimately, choice

    Under pressure: Response urgency modulates striatal and insula activity during decision-making under risk

    Get PDF
    When deciding whether to bet in situations that involve potential monetary loss or gain (mixed gambles), a subjective sense of pressure can influence the evaluation of the expected utility associated with each choice option. Here, we explored how gambling decisions, their psychophysiological and neural counterparts are modulated by an induced sense of urgency to respond. Urgency influenced decision times and evoked heart rate responses, interacting with the expected value of each gamble. Using functional MRI, we observed that this interaction was associated with changes in the activity of the striatum, a critical region for both reward and choice selection, and within the insula, a region implicated as the substrate of affective feelings arising from interoceptive signals which influence motivational behavior. Our findings bridge current psychophysiological and neurobiological models of value representation and action-programming, identifying the striatum and insular cortex as the key substrates of decision-making under risk and urgency

    Correspondence: Are Cognitive Functions Localizable? Colin Camerer et al. versus Marieke van Rooij and John G. Holden

    Get PDF
    The Fall 2011 issue of this journal published a two-paper section on “Neuroeconomics.” One paper, by Ernst Fehr and Antonio Rangel, clearly and concisely summarized a small part of the fast-growing literature. The second paper, “It’s about Space, It’s about Time, Neuroeconomics, and the Brain Sublime,” by Marieke van Rooij and Guy Van Orden, is beautifully written and enjoyable to read, but misleading in many critical ways. A number of economists and neuroscientists working at the intersection of the two fields shared our reaction and have signed this letter, as shown below. Some of the paper’s descriptions of empirical findings and methods in neuroeconomics are incomplete, badly out of date, or flatly wrong. In studies the authors describe in detail, their skeptical interpretations have often been refuted by published data, old and new, that they overlook

    The inverse problem of determining the filtration function and permeability reduction in flow of water with particles in porous media

    Get PDF
    The original publication can be found at www.springerlink.comDeep bed filtration of particle suspensions in porous media occurs during water injection into oil reservoirs, drilling fluid invasion of reservoir production zones, fines migration in oil fields, industrial filtering, bacteria, viruses or contaminants transport in groundwater etc. The basic features of the process are particle capture by the porous medium and consequent permeability reduction. Models for deep bed filtration contain two quantities that represent rock and fluid properties: the filtration function, which is the fraction of particles captured per unit particle path length, and formation damage function, which is the ratio between reduced and initial permeabilities. These quantities cannot be measured directly in the laboratory or in the field; therefore, they must be calculated indirectly by solving inverse problems. The practical petroleum and environmental engineering purpose is to predict injectivity loss and particle penetration depth around wells. Reliable prediction requires precise knowledge of these two coefficients. In this work we determine these quantities from pressure drop and effluent concentration histories measured in one-dimensional laboratory experiments. The recovery method consists of optimizing deviation functionals in appropriate subdomains; if necessary, a Tikhonov regularization term is added to the functional. The filtration function is recovered by optimizing a non-linear functional with box constraints; this functional involves the effluent concentration history. The permeability reduction is recovered likewise, taking into account the filtration function already found, and the functional involves the pressure drop history. In both cases, the functionals are derived from least square formulations of the deviation between experimental data and quantities predicted by the model.Alvarez, A. C., Hime, G., Marchesin, D., Bedrikovetski, P

    Interactivity and Reward-Related Neural Activation during a Serious Videogame

    Get PDF
    This study sought to determine whether playing a “serious” interactive digital game (IDG) – the Re-Mission videogame for cancer patients – activates mesolimbic neural circuits associated with incentive motivation, and if so, whether such effects stem from the participatory aspects of interactive gameplay, or from the complex sensory/perceptual engagement generated by its dynamic event-stream. Healthy undergraduates were randomized to groups in which they were scanned with functional magnetic resonance imaging (FMRI) as they either actively played Re-Mission or as they passively observed a gameplay audio-visual stream generated by a yoked active group subject. Onset of interactive game play robustly activated mesolimbic projection regions including the caudate nucleus and nucleus accumbens, as well as a subregion of the parahippocampal gyrus. During interactive gameplay, subjects showed extended activation of the thalamus, anterior insula, putamen, and motor-related regions, accompanied by decreased activation in parietal and medial prefrontal cortex. Offset of interactive gameplay activated the anterior insula and anterior cingulate. Between-group comparisons of within-subject contrasts confirmed that mesolimbic activation was significantly more pronounced in the active playgroup than in the passive exposure control group. Individual difference analyses also found the magnitude of parahippocampal activation following gameplay onset to correlate with positive attitudes toward chemotherapy assessed both at the end of the scanning session and at an unannounced one-month follow-up. These findings suggest that IDG-induced activation of reward-related mesolimbic neural circuits stems primarily from participatory engagement in gameplay (interactivity), rather than from the effects of vivid and dynamic sensory stimulation
    corecore