251 research outputs found

    Winter wheat roots grow twice as deep as spring wheat roots, is this important for N uptake and N leaching losses?

    Get PDF
    Cropping systems comprising winter catch crops followed by spring wheat could reduce N leaching risks compared to traditional winter wheat systems in humid climates. We studied the soil mineral N (Ninorg) and root growth of winter- and spring wheat to 2.5 m depth during three years. Root depth of winter wheat (2.2 m) was twice that of spring wheat, and this was related to much lower amounts of Ninorg in the 1 to 2.5 m layer after winter wheat (81 kg Ninorg ha-1 less). When growing winter catch crops before spring wheat, N content in the 1 to 2.5 m layer after spring wheat was not different from that after winter wheat. The results suggest that by virtue of its deep rooting, winter wheat may not lead to high levels of leaching as it is often assumed in humid climates. Deep soil and root measurements (below 1 m) in this experiment were essential to answer the questions we posed

    Activity, specificity and structure of I-Bth0305I: a representative of a new homing endonuclease family

    Get PDF
    Novel family of putative homing endonuclease genes was recently discovered during analyses of metagenomic and genomic sequence data. One such protein is encoded within a group I intron that resides in the recA gene of the Bacillus thuringiensis 0305ϕ8–36 bacteriophage. Named I-Bth0305I, the endonuclease cleaves a DNA target in the uninterrupted recA gene at a position immediately adjacent to the intron insertion site. The enzyme displays a multidomain, homodimeric architecture and footprints a DNA region of ∼60 bp. Its highest specificity corresponds to a 14-bp pseudopalindromic sequence that is directly centered across the DNA cleavage site. Unlike many homing endonucleases, the specificity profile of the enzyme is evenly distributed across much of its target site, such that few single base pair substitutions cause a significant decrease in cleavage activity. A crystal structure of its C-terminal domain confirms a nuclease fold that is homologous to very short patch repair (Vsr) endonucleases. The domain architecture and DNA recognition profile displayed by I-Bth0305I, which is the prototype of a homing lineage that we term the ‘EDxHD’ family, are distinct from previously characterized homing endonucleases

    Increased Numbers of IL-7 Receptor Molecules on CD4+CD25−CD107a+ T-Cells in Patients with Autoimmune Diseases Affecting the Central Nervous System

    Get PDF
    BACKGROUND: High content immune profiling in peripheral blood may reflect immune aberrations associated with inflammation in multiple sclerosis (MS) and other autoimmune diseases affecting the central nervous system. METHODS AND FINDINGS: Peripheral blood mononuclear cells from 46 patients with multiple sclerosis (MS), 9 patients diagnosed with relapsing remitting MS (RRMS), 13 with secondary progressive multiple sclerosis (SPMS), 9 with other neurological diseases (OND) and well as 15 healthy donors (HD) were analyzed by 12 color flow cytometry (TCRalphabeta, TCRgammadelta, CD4, CD8alpha, CD8beta, CD45RA, CCR7, CD27, CD28, CD107a, CD127, CD14) in a cross-sectional study to identify variables significantly different between controls (HD) and patients (OND, RRMS, SPMS). We analyzed 187 individual immune cell subsets (percentages) and the density of the IL-7 receptor alpha chain (CD127) on 59 individual immune phenotypes using a monoclonal anti-IL-7R antibody (clone R34.34) coupled to a single APC molecule in combination with an APC-bead array. A non-parametric analysis of variance (Kruskal-Wallis test) was conducted in order to test for differences among the groups in each of the variables. To correct for the multiplicity problem, the FDR correction was applied on the p-values. We identified 19 variables for immune cell subsets (percentages) which allowed to segregate healthy individuals and individuals with CNS disorders. We did not observe differences in the relative percentage of IL-7R-positive immune cells in PBMCs. In contrast, we identified significant differences in IL-7 density, measured on a single cell level, in 2/59 variables: increased numbers of CD127 molecules on TCRalphabeta+CD4+CD25 (intermed) T-cells and on TCRalphabeta+CD4+CD25-CD107a+ T-cells (mean: 28376 Il-7R binding sites on cells from HD, 48515 in patients with RRMS, 38195 in patients with SPMS and 33692 IL-7 receptor binding sites on cells from patients with OND). CONCLUSION: These data show that immunophenotyping represents a powerful tool to differentiate healthy individuals from individuals suffering from neurological diseases and that the number of IL-7 receptor molecules on differentiated TCRalphabeta+CD4+CD25-CD107a+ T-cells, but not the percentage of IL-7R-positive cells, segregates healthy individuals from patients with neurological disorders

    Expression of a protein involved in bone resorption, Dkk1, is activated by HTLV-1 bZIP factor through its activation domain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human T-cell leukemia virus type 1 (HTLV-1) is the etiologic agent of adult T-cell leukemia, a malignancy characterized by uncontrolled proliferation of virally-infected CD4+ T-cells. Hypercalcemia and bone lesions due to osteoclast-mediated bone resorption are frequently associated with more aggressive forms of the disease. The HTLV-1 provirus contains a unique antisense gene that expresses HTLV-1 basic leucine zipper (bZIP) factor (HBZ). HBZ is localized to the nucleus where it regulates levels of transcription by binding to certain cellular transcriptional regulators. Among its protein targets, HBZ forms a stable complex with the homologous cellular coactivators, p300 and CBP, which is modulated through two N-terminal LXXLL motifs in the viral protein and the conserved KIX domain in the coactivators.</p> <p>Results</p> <p>To determine the effects of these interactions on transcription, we performed a preliminary microarray analysis, comparing levels of gene expression in cells with wild-type HBZ versus cells with HBZ mutated in its LXXLL motifs. <it>DKK1</it>, which encodes the secreted Wnt signaling inhibitor, Dickkopf-1 (Dkk1), was confirmed to be transcriptionally activated by HBZ, but not its mutant. Dkk1 plays a major role in the development of bone lesions caused by multiple myeloma. In parallel with the initial findings, activation of Dkk1 expression by HBZ was abrogated by siRNA-mediated knockdown of p300/CBP or by a truncated form of p300 containing the KIX domain. Among HTLV-1-infected T-cell lines tested, the detection of Dkk1 mRNA partially correlated with a threshold level of HBZ mRNA. In addition, an uninfected and an HTLV-1-infected T-cell line transfected with an HBZ expression vector exhibited <it>de novo </it>and increased DKK1 transcription, respectively. In contrast to HBZ, The HTLV-1 Tax protein repressed Dkk1 expression.</p> <p>Conclusions</p> <p>These data indicate that HBZ activates Dkk1 expression through its interaction with p300/CBP. However, this effect is limited in HTLV-1-infected T-cell lines, which in part, may be due to suppression of Dkk1 expression by Tax. Consequently, the ability of HBZ to regulate expression of Dkk1 and possibly other cellular genes may only be significant during late stages of ATL, when Tax expression is repressed.</p

    Host galaxy identification for supernova surveys

    Get PDF
    Host galaxy identification is a crucial step for modern supernova (SN) surveys such as the Dark Energy Survey (DES) and the Large Synoptic Survey Telescope (LSST), which will discover SNe by the thousands. Spectroscopic resources are limited, so in the absence of real-time SN spectra these surveys must rely on host galaxy spectra to obtain accurate redshifts for the Hubble diagram and to improve photometric classification of SNe. In addition, SN luminosities are known to correlate with host-galaxy properties. Therefore, reliable identification of host galaxies is essential for cosmology and SN science. We simulate SN events and their locations within their host galaxies to develop and test methods for matching SNe to their hosts. We use both real and simulated galaxy catalog data from the Advanced Camera for Surveys General Catalog and MICECATv2.0, respectively. We also incorporate "hostless" SNe residing in undetected faint hosts into our analysis, with an assumed hostless rate of 5%. Our fully automated algorithm is run on catalog data and matches SNe to their hosts with 91% accuracy. We find that including a machine learning component, run after the initial matching algorithm, improves the accuracy (purity) of the matching to 97% with a 2% cost in efficiency (true positive rate). Although the exact results are dependent on the details of the survey and the galaxy catalogs used, the method of identifying host galaxies we outline here can be applied to any transient survey

    Role and task allocation framework for Multi-Robot Collaboration with latent knowledge estimation

    Get PDF
    In this work a novel framework for modeling role and task allocation in Cooperative Heterogeneous Multi-Robot Systems (CHMRSs) is presented. This framework encodes a CHMRS as a set of multidimensional relational structures (MDRSs). This set of structure defines collaborative tasks through both temporal and spatial relations between processes of heterogeneous robots. These relations are enriched with tensors which allow for geometrical reasoning about collaborative tasks. A learning schema is also proposed in order to derive the components of each MDRS. According to this schema, the components are learnt from data reporting the situated history of the processes executed by the team of robots. Data are organized as a multirobot collaboration treebank (MRCT) in order to support learning. Moreover, a generative approach, based on a probabilistic model, is combined together with nonnegative tensor decomposition (NTD) for both building the tensors and estimating latent knowledge. Preliminary evaluation of the performance of this framework is performed in simulation with three heterogeneous robots, namely, two Unmanned Ground Vehicles (UGVs) and one Unmanned Aerial Vehicle (UAV)

    CMB-S4: Forecasting Constraints on Primordial Gravitational Waves

    Full text link
    CMB-S4---the next-generation ground-based cosmic microwave background (CMB) experiment---is set to significantly advance the sensitivity of CMB measurements and enhance our understanding of the origin and evolution of the Universe, from the highest energies at the dawn of time through the growth of structure to the present day. Among the science cases pursued with CMB-S4, the quest for detecting primordial gravitational waves is a central driver of the experimental design. This work details the development of a forecasting framework that includes a power-spectrum-based semi-analytic projection tool, targeted explicitly towards optimizing constraints on the tensor-to-scalar ratio, rr, in the presence of Galactic foregrounds and gravitational lensing of the CMB. This framework is unique in its direct use of information from the achieved performance of current Stage 2--3 CMB experiments to robustly forecast the science reach of upcoming CMB-polarization endeavors. The methodology allows for rapid iteration over experimental configurations and offers a flexible way to optimize the design of future experiments given a desired scientific goal. To form a closed-loop process, we couple this semi-analytic tool with map-based validation studies, which allow for the injection of additional complexity and verification of our forecasts with several independent analysis methods. We document multiple rounds of forecasts for CMB-S4 using this process and the resulting establishment of the current reference design of the primordial gravitational-wave component of the Stage-4 experiment, optimized to achieve our science goals of detecting primordial gravitational waves for r>0.003r > 0.003 at greater than 5σ5\sigma, or, in the absence of a detection, of reaching an upper limit of r<0.001r < 0.001 at 95%95\% CL.Comment: 24 pages, 8 figures, 9 tables, submitted to ApJ. arXiv admin note: text overlap with arXiv:1907.0447

    Impact of clinical phenotypes on management and outcomes in European atrial fibrillation patients: a report from the ESC-EHRA EURObservational Research Programme in AF (EORP-AF) General Long-Term Registry

    Get PDF
    Background: Epidemiological studies in atrial fibrillation (AF) illustrate that clinical complexity increase the risk of major adverse outcomes. We aimed to describe European AF patients\u2019 clinical phenotypes and analyse the differential clinical course. Methods: We performed a hierarchical cluster analysis based on Ward\u2019s Method and Squared Euclidean Distance using 22 clinical binary variables, identifying the optimal number of clusters. We investigated differences in clinical management, use of healthcare resources and outcomes in a cohort of European AF patients from a Europe-wide observational registry. Results: A total of 9363 were available for this analysis. We identified three clusters: Cluster 1 (n = 3634; 38.8%) characterized by older patients and prevalent non-cardiac comorbidities; Cluster 2 (n = 2774; 29.6%) characterized by younger patients with low prevalence of comorbidities; Cluster 3 (n = 2955;31.6%) characterized by patients\u2019 prevalent cardiovascular risk factors/comorbidities. Over a mean follow-up of 22.5 months, Cluster 3 had the highest rate of cardiovascular events, all-cause death, and the composite outcome (combining the previous two) compared to Cluster 1 and Cluster 2 (all P &lt;.001). An adjusted Cox regression showed that compared to Cluster 2, Cluster 3 (hazard ratio (HR) 2.87, 95% confidence interval (CI) 2.27\u20133.62; HR 3.42, 95%CI 2.72\u20134.31; HR 2.79, 95%CI 2.32\u20133.35), and Cluster 1 (HR 1.88, 95%CI 1.48\u20132.38; HR 2.50, 95%CI 1.98\u20133.15; HR 2.09, 95%CI 1.74\u20132.51) reported a higher risk for the three outcomes respectively. Conclusions: In European AF patients, three main clusters were identified, differentiated by differential presence of comorbidities. Both non-cardiac and cardiac comorbidities clusters were found to be associated with an increased risk of major adverse outcomes

    Oval Cell Response Is Attenuated by Depletion of Liver Resident Macrophages in the 2-AAF/Partial Hepatectomy Rat

    Get PDF
    BACKGROUND/AIMS: Macrophages are known to play an important role in hepatocyte mediated liver regeneration by secreting inflammatory mediators. However, there is little information available on the role of resident macrophages in oval cell mediated liver regeneration. In the present study we aimed to investigate the role of macrophages in oval cell expansion induced by 2-acetylaminofluorene/partial hepatectomy (2-AAF/PH) in rats. METHODOLOGY/PRINCIPAL FINDINGS: We depleted macrophages in the liver of 2-AAF/PH treated rats by injecting liposome encapsulated clodronate 48 hours before PH. Regeneration of remnant liver mass, as well as proliferation and differentiation of oval cells were measured. We found that macrophage-depleted rats suffered higher mortality and liver transaminase levels. We also showed that depletion of macrophages yielded a significant decrease of EPCAM and PCK positive oval cells in immunohistochemical stained liver sections 9 days after PH. Meanwhile, oval cell differentiation was also attenuated as a result of macrophage depletion, as large foci of small basophilic hepatocytes were observed by day 9 following hepatectomy in control rats whereas they were almost absent in macrophage depleted rats. Accordingly, real-time polymerase chain reaction analysis showed lower expression of albumin mRNA in macrophage depleted livers. Then we assessed whether macrophage depletion may affect hepatic production of stimulating cytokines for liver regeneration. We showed that macrophage-depletion significantly inhibited hepatic expression of tumor necrosis factor-α and interleukin-6, along with a lack of signal transducer and activator of transcription 3 phosphorylation during the early period following hepatectomy. CONCLUSIONS: These data indicate that macrophages play an important role in oval cell mediated liver regeneration in the 2-AAF/PH model

    CMB-S4

    Get PDF
    We describe the stage 4 cosmic microwave background ground-based experiment CMB-S4
    corecore