1,086 research outputs found

    Towards a definition of refugees

    Get PDF

    Forced Migration: an Economist's Perspective

    Get PDF

    Numerical optimization techniques for bound circulation distribution for minimum induced drag of Nonplanar wings: Computer program documentation

    Get PDF
    A two dimensional advanced panel far-field potential flow model of the undistorted, interacting wakes of multiple lifting surfaces was developed which allows the determination of the spanwise bound circulation distribution required for minimum induced drag. This model was implemented in a FORTRAN computer program, the use of which is documented in this report. The nonplanar wakes are broken up into variable sized, flat panels, as chosen by the user. The wake vortex sheet strength is assumed to vary linearly over each of these panels, resulting in a quadratic variation of bound circulation. Panels are infinite in the streamwise direction. The theory is briefly summarized herein; sample results are given for multiple, nonplanar, lifting surfaces, and the use of the computer program is detailed in the appendixes

    Anisotropic flow and jet quenching in ultra-relativistic U+U collisions

    Get PDF
    Full-overlap U+U collisions provide significantly larger initial energy densities at comparable spatial deformation, and significantly larger deformation and volume at comparable energy density, than semicentral Au+Au collisions. We show quantitatively that this provides a long lever arm for studying the hydrodynamic behavior of elliptic flow in much larger and denser collision systems and the predicted non-linear path-length dependence of radiative parton energy loss.Comment: 4 pages, incl. 5 figures. First figure of v1 removed due to space limitations. Title changed by journal request. Minor other changes and a few references added or updated. This version accepted by Physical Review Letter

    Revealing Interaction Of Organic Adsorbates With Semiconductor Surfaces Using Chemically Enhanced Raman

    Get PDF
    Surface enhanced Raman spectroscopy (SERS) is frequently associated with chemical enhancement (CE), which is an effect of the chemical coupling between reporting molecules and surfaces. While SERS technique is mainly attributed to the studies of metallic surfaces, chemical coupling must be present on semiconductor surfaces as well. Here, we examine binding of trans-1,2-two(4-pyridyl) ethylene (BPE) to various crystallographic facets of PbSe semiconductor. The calculated off-resonant Raman spectra vary significantly on different crystallographic facets of PbSe, correlating with the electronic structure of each type of semiconductor surface. We distinguish situations when the charge transfer is present and when it is not, which raises the question about what exactly should be called the chemical enhancement . We attempt to clarify this situation by introducing the concept of the charge-transfer and charge-transfer-less chemical enhancement. We also demonstrate a transition between these two regimes, which exhibits a nonlinear behavior of the vibrational coupling and a significantly stronger contribution to the Raman intensity

    Evaluation of NASA SPoRT's Pseudo-Geostationary Lightning Mapper Products in the 2011 Spring Program

    Get PDF
    NASA's Short-term Prediction Research and Transition (SPoRT) program is a contributing partner with the GOES-R Proving Ground (PG) preparing forecasters to understand and utilize the unique products that will be available in the GOES-R era. This presentation emphasizes SPoRT s actions to prepare the end user community for the Geostationary Lightning Mapper (GLM). This preparation is a collaborative effort with SPoRT's National Weather Service partners, the National Severe Storms Laboratory (NSSL), and the Hazardous Weather Testbed s Spring Program. SPoRT continues to use its effective paradigm of matching capabilities to forecast problems through collaborations with our end users and working with the developers at NSSL to create effective evaluations and visualizations. Furthermore, SPoRT continues to develop software plug-ins so that these products will be available to forecasters in their own decision support system, AWIPS and eventually AWIPS II. In 2009, the SPoRT program developed the original pseudo geostationary lightning mapper (PGLM) flash extent product to demonstrate what forecasters may see with GLM. The PGLM replaced the previous GLM product and serves as a stepping-stone until the AWG s official GLM proxy is ready. The PGLM algorithm is simple and can be applied to any ground-based total lightning network. For 2011, the PGLM used observations from four ground-based networks (North Alabama, Kennedy Space Center, Oklahoma, and Washington D.C.). While the PGLM is not a true proxy product, it is intended as a tool to train forecasters about total lightning as well as foster discussions on product visualizations and incorporating GLM-resolution data into forecast operations. The PGLM has been used in 2010 and 2011 and is likely to remain the primary lightning training tool for the GOES-R program for the near future. This presentation will emphasize the feedback received during the 2011 Spring Program. This will discuss several topics. Based on feedback from the 2010 Spring Program, SPoRT created two variant PGLM products, which NSSL produced locally and provided in real-time within AWIPS for 2011. The first is the flash initiation density (FID) product, which creates a gridded display showing the number of flashes that originated in each 8 8 km grid box. The second product is the maximum flash density (MFD). This shows the highest PGLM value for each grid point over a specific period of time, ranging from 30 to 120 minutes. In addition to the evaluation of these two new products, the evaluation of the PGLM itself will be covered. The presentation will conclude with forecaster feedback for additional improvements requested for future evaluations, such as within the 2012 Spring Program
    • …
    corecore