44 research outputs found

    Accuracy Study of a 2-Component Point Doppler Velocimeter (PDV)

    Get PDF
    A two-component Point Doppler Velocimeter (PDV) which has recently been developed is described, and a series of velocity measurements which have been obtained to quantify the accuracy of the PDV system are summarized. This PDV system uses molecular iodine vapor cells as frequency discriminating filters to determine the Doppler shift of laser light which is scattered off of seed particles in a flow. The majority of results which have been obtained to date are for the mean velocity of a rotating wheel, although preliminary data are described for fully-developed turbulent pipe flow. Accuracy of the present wheel velocity data is approximately +/- 1 % of full scale, while linearity of a single channel is on the order of +/- 0.5 % (i.e., +/- 0.6 m/sec and +/- 0.3 m/sec, out of 57 m/sec, respectively). The observed linearity of these results is on the order of the accuracy to which the speed of the rotating wheel has been set for individual data readings. The absolute accuracy of the rotating wheel data is shown to be consistent with the level of repeatability of the cell calibrations. The preliminary turbulent pipe flow data show consistent turbulence intensity values, and mean axial velocity profiles generally agree with pitot probe data. However, there is at present an offset error in the radial velocity which is on the order of 5-10 % of the mean axial velocity

    A Proof of Security of a Mesh Security Architecture

    Get PDF
    The IEEE 802.11s standard is tasked to provide ways of establishing and securing a wireless mesh network. One proposal establishes a Mesh Security Architecture (MSA), with an interesting key hierarchy and full protocol definitions. This paper proves the correctness and security of the MSA proposal and its corresponding protocols. We also propose and prove the security of an additional protocol (an abbreviated handshake) which offers a substantial efficiency improvement in certain instances. To prove the entire architecture secure, we utilize Protocol Composition Logic (PCL) to prove each protocol secure. From that basis, we can show the protocols compose securely to prove the entire architecture. We also contribute some novel concepts to PCL, to allow us to prove the security of the overall architecture

    Seismic imaging in Long Valley, California, by surface and borehole techniques: An investigation of active tectonics

    Get PDF
    The search for silicic magma in the upper crust is converging on the Long Valley Caldera of eastern California, where several lines of geophysical evidence show that an active magma chamber exists at mid‐to lower‐crustal depths. There are also other strong indications that magma may be present at depths no greater than about 5 km below the surface. In this paper, we review the history of the search for magma at Long Valley. We also present the preliminary results from a coordinated suite of seismic experiments, conducted by a consortium of institutions in the summer and fall of 1984, that were designed to refine our knowledge of the upper extent of the magma chamber. Major funding for the experiments was provided by the Geothermal Research Program of the U.S. Geological Survey (USGS) and by the Magma Energy Technology Program of the U.S. Department of Energy (DOE), a program to develop the technology necessary to extract energy directly from crustal magma. Additional funding came from DOE's Office of Basic Energy Sciences and the National Science Foundation (NSF). Also, because extensive use was made of a 0.9‐km‐deep well lent to us by Santa Fe Geothermal, Inc., the project was conducted partly under the auspices of the Continental Scientific Drilling Program (CSDP). As an integrated seismic study of the crust within the caldera that involved the close cooperation of a large number of institutions, the project was moreover viewed as a prototype for future scientific experiments to be conducted under the Program for Array Seismic Studies of the Continental Lithosphere (PASSCAL). The experiment thus represented a unique blend of CSDP and PASSCAL methods, and achieved goals consistent with both programs

    LSST Science Book, Version 2.0

    Get PDF
    A survey that can cover the sky in optical bands over wide fields to faint magnitudes with a fast cadence will enable many of the exciting science opportunities of the next decade. The Large Synoptic Survey Telescope (LSST) will have an effective aperture of 6.7 meters and an imaging camera with field of view of 9.6 deg^2, and will be devoted to a ten-year imaging survey over 20,000 deg^2 south of +15 deg. Each pointing will be imaged 2000 times with fifteen second exposures in six broad bands from 0.35 to 1.1 microns, to a total point-source depth of r~27.5. The LSST Science Book describes the basic parameters of the LSST hardware, software, and observing plans. The book discusses educational and outreach opportunities, then goes on to describe a broad range of science that LSST will revolutionize: mapping the inner and outer Solar System, stellar populations in the Milky Way and nearby galaxies, the structure of the Milky Way disk and halo and other objects in the Local Volume, transient and variable objects both at low and high redshift, and the properties of normal and active galaxies at low and high redshift. It then turns to far-field cosmological topics, exploring properties of supernovae to z~1, strong and weak lensing, the large-scale distribution of galaxies and baryon oscillations, and how these different probes may be combined to constrain cosmological models and the physics of dark energy.Comment: 596 pages. Also available at full resolution at http://www.lsst.org/lsst/sciboo

    Seismic imaging in Long Valley, California, by surface and borehole techniques: An investigation of active tectonics

    Get PDF
    The search for silicic magma in the upper crust is converging on the Long Valley Caldera of eastern California, where several lines of geophysical evidence show that an active magma chamber exists at mid‐to lower‐crustal depths. There are also other strong indications that magma may be present at depths no greater than about 5 km below the surface. In this paper, we review the history of the search for magma at Long Valley. We also present the preliminary results from a coordinated suite of seismic experiments, conducted by a consortium of institutions in the summer and fall of 1984, that were designed to refine our knowledge of the upper extent of the magma chamber. Major funding for the experiments was provided by the Geothermal Research Program of the U.S. Geological Survey (USGS) and by the Magma Energy Technology Program of the U.S. Department of Energy (DOE), a program to develop the technology necessary to extract energy directly from crustal magma. Additional funding came from DOE's Office of Basic Energy Sciences and the National Science Foundation (NSF). Also, because extensive use was made of a 0.9‐km‐deep well lent to us by Santa Fe Geothermal, Inc., the project was conducted partly under the auspices of the Continental Scientific Drilling Program (CSDP). As an integrated seismic study of the crust within the caldera that involved the close cooperation of a large number of institutions, the project was moreover viewed as a prototype for future scientific experiments to be conducted under the Program for Array Seismic Studies of the Continental Lithosphere (PASSCAL). The experiment thus represented a unique blend of CSDP and PASSCAL methods, and achieved goals consistent with both programs

    Childhood Maltreatment and Immune Cell Gene Regulation during Adolescence: Transcriptomics Highlight Non-Classical Monocytes.

    No full text
    Childhood maltreatment has been repeatedly linked to a higher incidence of health conditions with an underlying proinflammatory component, such as asthma, chronic obstructive pulmonary disease, stroke, and cardiovascular disease. Childhood maltreatment has also been linked to elevated systemic inflammation prior to the onset of disease. However, childhood maltreatment is highly comorbid with other risk factors which have also been linked to inflammation, namely major depression. The present analysis addresses this issue by assessing the association of maltreatment with genome-wide transcriptional profiling of immune cells collected from four orthogonal groups of adolescents (aged 13-17): maltreated and not maltreated in childhood, with and without major depressive disorder. Maltreatment and psychiatric history were determined using semi-structured clinical interviews and cross-validated using self-report questionnaires. Dried whole blood spots were collected from each participant (n = 133) and assayed to determine the extent to which maltreatment in childhood was associated with a higher prevalence of transcriptional activity among differentially expressed genes, specific immune cell subtypes, and up- or down-regulation of genes involved in immune function after accounting for current major depression. Maltreatment was associated with increased interferon regulatory factor (IRF) transcriptional activity (p = 0.03), as well as nuclear factor erythroid-2 related factor 1 (NRF1; p = 0.002) and MAF (p = 0.01) among up-regulated genes, and increased activity of nuclear factor kappa beta (NF-ÎșB) among down-regulated genes (p = 0.01). Non-classical CD16+ monocytes were implicated in both the up- and down-regulated genes among maltreated adolescents. These data provide convergent evidence supporting the role of maltreatment in altering intracellular and molecular markers of immune function, as well as implicate monocyte/macrophage functions as mechanisms through which childhood maltreatment may shape lifelong immune development and function

    Childhood Maltreatment and Immune Cell Gene Regulation during Adolescence: Transcriptomics Highlight Non-Classical Monocytes

    No full text
    Childhood maltreatment has been repeatedly linked to a higher incidence of health conditions with an underlying proinflammatory component, such as asthma, chronic obstructive pulmonary disease, stroke, and cardiovascular disease. Childhood maltreatment has also been linked to elevated systemic inflammation prior to the onset of disease. However, childhood maltreatment is highly comorbid with other risk factors which have also been linked to inflammation, namely major depression. The present analysis addresses this issue by assessing the association of maltreatment with genome-wide transcriptional profiling of immune cells collected from four orthogonal groups of adolescents (aged 13–17): maltreated and not maltreated in childhood, with and without major depressive disorder. Maltreatment and psychiatric history were determined using semi-structured clinical interviews and cross-validated using self-report questionnaires. Dried whole blood spots were collected from each participant (n = 133) and assayed to determine the extent to which maltreatment in childhood was associated with a higher prevalence of transcriptional activity among differentially expressed genes, specific immune cell subtypes, and up- or down-regulation of genes involved in immune function after accounting for current major depression. Maltreatment was associated with increased interferon regulatory factor (IRF) transcriptional activity (p = 0.03), as well as nuclear factor erythroid-2 related factor 1 (NRF1; p = 0.002) and MAF (p = 0.01) among up-regulated genes, and increased activity of nuclear factor kappa beta (NF-ÎșB) among down-regulated genes (p = 0.01). Non-classical CD16+ monocytes were implicated in both the up- and down-regulated genes among maltreated adolescents. These data provide convergent evidence supporting the role of maltreatment in altering intracellular and molecular markers of immune function, as well as implicate monocyte/macrophage functions as mechanisms through which childhood maltreatment may shape lifelong immune development and function
    corecore