15 research outputs found
Mixture effects at very low doses with combinations of anti-androgenic pesticides, antioxidants, industrial pollutant and chemicals used in personal care products
This article has been made available through the Brunel Open Access Publishing Fund.Many xenobiotics have been identified as in vitro androgen receptor (AR) antagonists, but information about their ability to produce combined effects at low concentrations ismissing. Such data can reveal whether joint effects at the receptor are induced at low levels andmay support the prioritisation of in vivo evaluations and provide orientations for the grouping of anti-androgens in cumulative risk assessment. Combinations of 30 AR antagonists from a wide range of sources and exposure routes (pesticides, antioxidants, parabens, UV-filters, synthetic musks, bisphenol-A, benzo(a)pyrene, perfluorooctane sulfonate and pentabromodiphenyl ether) were tested using a reporter gene assay (MDA-kb2). Chemicalswere combined at threemixture ratios, equivalent to single components' effect concentrations that inhibit the action of dihydrotesterone by 1%, 10% or 20%. Concentration addition (CA) and independent action were used to calculate additivity expectations. We observed complete suppression of dihydrotestosterone effects when chemicals were combined at individual concentrations eliciting 1%, 10% or 20% AR antagonistic effect. Due to the large number of mixture components, the combined AR antagonistic effects occurred at very low concentrations of individual mixture components. CA slightly underestimated the combined effects at all mixture ratios. In conclusion, large numbers of AR antagonists froma wide variety of sources and exposure routes have the ability of acting together at the receptor to produce joint effects at very low concentrations.
Significant mixture effects are observed when chemicals are combined at concentrations that individually do not induce observable AR antagonistic effects. Cumulative risk assessment for AR antagonists should apply grouping criteria based on effects where data are available, rather than on criteria of chemical similarity
Internal exposure dynamics drive the Adverse Outcome Pathways of synthetic glucocorticoids in fish
The Adverse Outcome Pathway (AOP) framework represents a valuable conceptual tool to systematically integrate existing toxicological knowledge from a mechanistic perspective to facilitate predictions of chemical-induced effects across species. However, its application for decision-making requires the transition from qualitative to quantitative AOP (qAOP). Here we used a fish model and the synthetic glucocorticoid beclomethasone dipropionate (BDP) to investigate the role of chemical-specific properties, pharmacokinetics, and internal exposure dynamics in the development of qAOPs. We generated a qAOP network based on drug plasma concentrations and focused on immunodepression, skin androgenisation, disruption of gluconeogenesis and reproductive performance. We showed that internal exposure dynamics and chemical-specific properties influence the development of qAOPs and their predictive power. Comparing the effects of two different glucocorticoids, we highlight how relatively similar in vitro hazard-based indicators can lead to different in vivo risk. This discrepancy can be predicted by their different uptake potential, pharmacokinetic (PK) and pharmacodynamic (PD) profiles. We recommend that the development phase of qAOPs should include the application of species-species uptake and physiologically-based PK/PD models. This integration will significantly enhance the predictive power, enabling a more accurate assessment of the risk and the reliable transferability of qAOPs across chemicals.This work was funded by a Biotechnology and Biological Sciences Research Council (BBSRC) Research Grant (BB/100646X/1), co-funded by the AstraZeneca Global Safety, Health and Environment research programme, to JPS and MR-W supporting LM-C
The read-across hypothesis and environmental risk assessment of pharmaceuticals
This article is made available through the Brunel Open Access Publishing Fund. Copyright © 2013 American Chemical Society.Pharmaceuticals in the environment have received increased attention over the past decade, as they are ubiquitous in rivers and waterways. Concentrations are in sub-ng to low μg/L, well below acute toxic levels, but there are uncertainties regarding the effects of chronic exposures and there is a need to prioritise which pharmaceuticals may be of concern. The read-across hypothesis stipulates that a drug will have an effect in non-target organisms only if the molecular targets such as receptors and enzymes have been conserved, resulting in a (specific) pharmacological effect only if plasma concentrations are similar to human therapeutic concentrations. If this holds true for different classes of pharmaceuticals, it should be possible to predict the potential environmental impact from information obtained during the drug development process. This paper critically reviews the evidence for read-across, and finds that few studies include plasma concentrations and mode of action based effects. Thus, despite a large number of apparently relevant papers and a general acceptance of the hypothesis, there is an absence of documented evidence. There is a need for large-scale studies to generate robust data for testing the read-across hypothesis and developing predictive models, the only feasible approach to protecting the environment.BBSRC Industrial Partnership Award BB/
I00646X/1 and BBSRC Industrial CASE Partnership Studentship
BB/I53257X/1 with AstraZeneca Safety Health and
Environment Research Programme
Impact of post - tsunami rehabilitation activities on selective fishing in the Northern coast of Jaffna peninsula
A questionnaire based survey was eonducted in May 2006, among the Tsunami affected fishermen of'Northern Jaffna peninsula, in order to assess the fishing effort after Tsunami rehabilitation activities.4337 families along the coast from Valvettithurai to Kaddaikadu were included in to the survey andthey were divided in to 72 sites according to their respective donor agencies. 16 Non governmentalorganizations were identified as donor agencies for permanent housing schemes, out of which 6agencies directly donated fishing gears and boats. The types and numbers offishing gears and boatsused before and after tsunami were recorded.Results indicate that all the traditional canoes have been replaced by fiber reinforced boats and thenumber of boats showed 12% increase after tsunami. Before tsunami, there were diverse types offishing gears with wide range of mesh size. But post tsunami rehabil itation aids provided on Iy the gi IInets of2 different mesh sizes, one for fish and the other for skates. Although large numbers of boatshave been given, most of them are not in use because of the prevailing unrest situation in this region.Therefore fishing effort due to the increased number of boats is immaterial. But reduced diversity offishing gear will have major impact on stock. Since fishing is restricted in to a narrow belt along thecoast repeated use of skate gill net by most of the fishermen will lead to an over exploitation of skatespecies. Similarly, selective fishing by gill net will deplete coastal fish species. Therefore donor agenciesshould focus on remedial actions in order to diversify the fishing gears in type and in mesh size
Recommended from our members
The consequences of exposure to mixtures of chemicals: Something from ‘nothing’ and ‘a lot from a little’ when fish are exposed to steroid hormones
Ill-defined, multi-component mixtures of steroidal pharmaceuticals are present in the aquatic environment. Fish are extremely sensitive to some of these steroids. It is important to know how fish respond to these mixtures, and from that knowledge develop methodology that enables accurate prediction of those responses. To provide some of the data required to reach this objective, pairs of fish were first exposed to five different synthetic steroidal pharmaceuticals (one estrogen, EE2; one androgen, trenbolone; one glucocorticoid, beclomethasone dipropionate; and two progestogens, desogestrel and levonorgestrel) and concentration-response data on egg production obtained. Based on those concentration-response relationships, a five component mixture was designed and tested twice. Very similar effects were observed in the two experiments. The mixture inhibited egg production in an additive manner predicted better by the model of Independent Action than that of Concentration Addition. Our data provide a reference case for independent action in an in vivo model. A significant combined effect was observed when each steroidal pharmaceutical in the mixture was present at a concentration which on its own would produce no statistically significant effect (something from ‘nothing’). Further, when each component was present in the mixture at a concentration expected to inhibit egg production by between 18% (Beclomethasone diproprionate) and 40% (trenbolone), this mixture almost completely inhibited egg production: a phenomenon we term ‘a lot from a little’. The results from this proof-of-principle study suggest that multiple steroids present in the aquatic environment can be analysed for their potential combined environmental risk
Effects of antiepileptic drugs on the human fetal testis ex vivo
International audienc