21 research outputs found

    Biofouling growth on plastic substrates: Experimental studies in the Black Sea

    Get PDF
    Despite long-term research on marine litter there is still insufficient knowledge about benthic organisms associated with these substrates, especially experimental studies and methodology of sampling for complex biofouling assemblages. To predict the fate of plastic in the marine environment it is necessary to know how long the macrolitter can stay in different sea matrices and what are the steps of colonisation by marine organisms. The experiments were carried out during various seasons in situ in the north-western Black Sea coastal area. Three new types of the experimental constructions intended for different durations of exposure (1–10 months) were designed. This article is the first to present the methodology and the results of complex experiments investigating marine fouling (from microalgae to meio- and macrofauna) on plastic surfaces. Overall, 28 genera of microalgae, 13 major groups of meiobenthos and 36 species of macrofauna were found on plastic during the experiments. The microalgae fouling was mainly formed by representatives of genus Cocconeis. The species composition of microalgae was common for the research area. The average density and biomass of meiobenthos were the greatest on I construction type after 8 months of exposure. In the total macrozoobenthos biomass and density of Bivalvia and Crustacea dominated, respectively. The obtained results on the interaction between fouling organisms and plastic materials in the marine environment form an important contribution to the understanding of the "good ecological status" of the sea. Additional studies based on the tested methodology could be used as a component of ecological monitoring during development and implementation of the approaches of the Marine Strategy (descriptor 10)

    Огляд і обґрунтування вибору стеку технологій для системи аналізу даних

    No full text
    The main advantage of the automation process is that it allows to reduce the amount of required memory, reduce the time for data processing, and reduce the number of copies of documents when updating information. The choice of technologies for developing an application is an important stage which has been described in paper. Before developing the analyze data system, the requirements should be carefully prepared and described. A well-chosen combination of technologies should ensure comfortable work in the future at all stages of the application's existence Obviously, the technology stack should be easily scalable, functional, correspond the latest market trends. It should meet the most modern features. Most importantly, it has to be easily supported in the future by other developers. React.js has a capacious and understandable API. To work with React, it is necessary to understand a number of terms and the differences between them. The TypeScript language is one of the most popular technologies of recent years, both in Frontend and Backend development. Its popularity continues to grow and it is at the heart of many projects. GraphQL is a query and data manipulation language for APIs. The name D3 itself stands for data driven documents and focuses on data management.Главным преимуществом процесса автоматизации является то, что он позволяет уменьшить объем требуемой памяти, сократить время на обработку данных и уменьшить количество копий документов при обновлении информации.Выбор технологий для разработки приложений является важным этапом, который был описан в работе. Прежде чем разрабатывать систему анализа данных, следует тщательно подготовить и описать требования. Правильно подобранная комбинация технологий должно обеспечить комфортную работу в будущем на всех этапах существования программыОчевидно, что стек технологий должен быть легко масштабируемым, функциональным, соответствовать последним тенденциям рынка. Он должен отвечать современным характеристикам. Самое главное, что в будущем его должны легко поддерживать другие разработчики.React.js имеет вместительный и понятный API. Для работы с React необходимо понимать ряд терминов и различия между ними. Язык TypeScript - одна из самых популярных технологий последних лет, как в разработке Frontend, так и в программе Backend. Его популярность продолжает расти, и это в основе многих проектов. GraphQL - это язык запросов и обработки данных для API. Само название D3 означает документы, управляемые данными, и сосредоточена на управлении данными.Головною перевагою процесу автоматизації є те, що він дозволяє зменшити обсяг необхідної пам'яті, скоротити час на обробку даних та зменшити кількість копій документів при оновленні інформації. Вибір технологій для розробки додатків є важливим етапом, який був описаний у роботі. Перш ніж розробляти систему аналізу даних, слід ретельно підготувати та описати вимоги. Правильно підібрана комбінація технологій повинна забезпечити комфортну роботу в майбутньому на всіх етапах існування програми Очевидно, що стек технологій повинен бути легко масштабованим, функціональним, відповідати останнім тенденціям ринку. Він повинен відповідати найсучаснішим характеристикам. Найголовніше, що в майбутньому його повинні легко підтримувати інші розробники. React.js має місткий і зрозумілий API. Для роботи з React необхідно розуміти ряд термінів та відмінності між ними. Мова TypeScript - одна з найпопулярніших технологій останніх років, як у розробці Frontend, так і в програмі Backend. Його популярність продовжує зростати, і це в основі багатьох проектів. GraphQL - це мова запитів та обробки даних для API. Сама назва D3 означає документи, керовані даними, і зосереджена на управлінні даними

    Synthesis and properties of fuel cell anodes based on (La0.5+x Sr0.5-x )(1-y) Mn0.5Ti0.5O3-delta (x=0-0.25, y=0-0.03)

    No full text
    Results are presented of studying electrochemical properties of perovskite-like solid solutions (La0.5 + x Sr0.5 - x )(1 - y) Mn0.5Ti0.5O3 - delta (x = 0-0.25, y = 0-0.03) synthesized using the citrate technique and studied as oxide anodic materials for solid oxide fuel cells (SOFC). X-ray diffraction (XRD) analysis is used to establish that the materials are stable in a wide range of oxygen chemical potential, stable in the presence of 5 ppm H2S in the range of intermediate temperatures, and also chemically compatible with the solid electrolyte of La0.8Sr0.2Ga0.8Mg0.15Co0.05O3 - delta (LSGMC). It is shown that transition to a reducing atmosphere results in a decrease in electron conductivity that produced a significant effect on the electrochemical activity of porous electrodes. Model cells of planar SOFC on a supporting solid-electrolyte membrane (LSGMC) with anodes based on (La0.6Sr0.4)(0.97)Mn0.5Ti0.5O3 - delta and (La0.75Sr0.25)(0.97)Mn0.5Ti0.5O3 - delta and a cathode of Sm0.5Sr0.5CoO3 - delta are manufactured and tested using the voltammetry technique

    Na2/7Gd4/7MoO4: a Modulated Scheelite-Type Structure and Conductivity Properties

    No full text
    Scheelite-type compounds with the general formula (A1,A2)(n)[(B1,B2)O-4](m) (2/3 <= n/m <= 3/2) are the subject of large interest owing to their stability, relatively simple preparation, and optical properties. The creation of cation vacancies (square) in the scheelite-type framework and the ordering of A cations and vacancies can be a new factor in controlling the scheelite-type structure and properties. For a long time, cation-deficient Nd3+:M2/7Gd4/7 square 1/7MoO4 (M = Li, Na) compounds were considered as potential lasers with diode pumping. They have a defect scheelite-type 3D structure (space group I4(1)/a) with a random distribution of Li+(Na+), Gd3+, and vacancies in the crystal. A Na2/7Gd4/7MoO4 single crystal with scheelite-type structure has been grown by the Czochralski method. Transmission electron microscopy revealed that Na2/7Gd4/7MoO4 has a (3 + 2)D incommensurately modulated structure. The (3 + 2)D incommensurately modulated scheelite-type cation-deficient structure of Na2/7Gd4/7MoO4 [super space group (I4) over bar (alpha-beta 0,beta alpha 0)00] has been solved from single-crystal diffraction data. The solution of the (3 + 2)D incommensurately modulated structure revealed the partially disordered distribution of vacancies and Na and Gd cations. High-temperature conductivity measurements performed along the [100] and [001] orientation of the single crystal revealed that the conductivity of Na2/7Gd4/7MoO4 at T = 973 K equals sigma = 1.13 X 10(-5) Omega(-1) cm(-1)

    Na<sub>2/7</sub>Gd<sub>4/7</sub>MoO<sub>4</sub>: a Modulated Scheelite-Type Structure and Conductivity Properties

    No full text
    Scheelite-type compounds with the general formula (A1,A2)<sub><i>n</i></sub>[(B1,B2)­O<sub>4</sub>]<sub><i>m</i></sub> (<sup>2</sup>/<sub>3</sub> ≤ <i>n</i>/<i>m</i> ≤ <sup>3</sup>/<sub>2</sub>) are the subject of large interest owing to their stability, relatively simple preparation, and optical properties. The creation of cation vacancies (□) in the scheelite-type framework and the ordering of A cations and vacancies can be a new factor in controlling the scheelite-type structure and properties. For a long time, cation-deficient Nd<sup>3+</sup>:M<sub>2/7</sub>Gd<sub>4/7</sub>□<sub>1/7</sub>MoO<sub>4</sub> (M = Li, Na) compounds were considered as potential lasers with diode pumping. They have a defect scheelite-type 3D structure (space group <i>I</i>4<sub>1</sub>/<i>a</i>) with a random distribution of Li<sup>+</sup>(Na<sup>+</sup>), Gd<sup>3+</sup>, and vacancies in the crystal. A Na<sub>2/7</sub>Gd<sub>4/7</sub>MoO<sub>4</sub> single crystal with scheelite-type structure has been grown by the Czochralski method. Transmission electron microscopy revealed that Na<sub>2/7</sub>Gd<sub>4/7</sub>MoO<sub>4</sub> has a (3 + 2)­D incommensurately modulated structure. The (3 + 2)­D incommensurately modulated scheelite-type cation-deficient structure of Na<sub>2/7</sub>Gd<sub>4/7</sub>MoO<sub>4</sub> [super space group <i>I</i>4̅ (α–β0,βα0)­00] has been solved from single-crystal diffraction data. The solution of the (3 + 2)­D incommensurately modulated structure revealed the partially disordered distribution of vacancies and Na and Gd cations. High-temperature conductivity measurements performed along the [100] and [001] orientation of the single crystal revealed that the conductivity of Na<sub>2/7</sub>Gd<sub>4/7</sub>MoO<sub>4</sub> at <i>T</i> = 973 K equals σ = 1.13 × 10<sup>–5</sup> Ω<sup>–1</sup> cm<sup>–1</sup>
    corecore