202 research outputs found

    Phenotypic plasticity in the range-margin population of the lycaenid butterfly Zizeeria maha

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many butterfly species have been experiencing the northward range expansion and physiological adaptation, probably due to climate warming. Here, we document an extraordinary field case of a species of lycaenid butterfly, <it>Zizeeria maha</it>, for which plastic phenotypes of wing color-patterns were revealed at the population level in the course of range expansion. Furthermore, we examined whether this outbreak of phenotypic changes was able to be reproduced in a laboratory.</p> <p>Results</p> <p>In the recently expanded northern range margins of this species, more than 10% of the <it>Z. maha </it>population exhibited characteristic color-pattern modifications on the ventral wings for three years. We physiologically reproduced similar phenotypes by an artificial cold-shock treatment of a normal southern population, and furthermore, we genetically reproduced a similar phenotype after selective breeding of a normal population for ten generations, demonstrating that the cold-shock-induced phenotype was heritable and partially assimilated genetically in the breeding line. Similar genetic process might have occurred in the previous and recent range-margin populations as well. Relatively minor modifications expressed in the tenth generation of the breeding line together with other data suggest a role of founder effect in this field case.</p> <p>Conclusions</p> <p>Our results support the notion that the outbreak of the modified phenotypes in the recent range-margin population was primed by the revelation of plastic phenotypes in response to temperature stress and by the subsequent genetic process in the previous range-margin population, followed by migration and temporal establishment of genetically unstable founders in the recent range margins. This case presents not only an evolutionary role of phenotypic plasticity in the field but also a novel evolutionary aspect of range expansion at the species level.</p

    In vitro analysis of radioprotective effect of monoterpenes

    Get PDF
    Monoterpenes are naturally occurring hydrocarbons composed of two units of isoprenes. They exhibit antioxidant activity to scavenge reactive oxygen species, such as hydroxyl radicals. We investigated the potential of monoterpenes such as thymol, linalool, and menthol to act as radioprotectants. The proliferation of EL4 cells, a mouse lymphoma cell line, treated with linalool at a concentration of 500 μM or more was not affected by X-ray irradiation. Plasmid-nicking assay performed using formamidopyrimidine-DNA glycosylase showed that linalool prevented single strand breaks and oxidized purines on pUC19 plasmid DNA. These findings indicate that linalool has the ability to scavenge reactive oxygen species and is a potential radioprotector

    In vivo safety evaluation of the Clostridium butyricum MIYAIRI 588 strain in broilers, piglets, and turkeys

    Get PDF
    Clostridium butyricum MIYAIRI 588 (CBM 588) is a nonpathogenic, anaerobic, gram-positive bacillus characterized by the production of short-chain fatty acids, including butyrate. The safety and tolerance of CBM 588 was investigated as a feed additive for broiler chickens, weaned piglets, and turkeys. CBM 588 administered to broilers at doses up to 5 × 107 CFU/g feed for 42 days produced no detrimental effects on zootechnical performance, natural mortality, hematology, or biochemical parameters. Piglets receiving CBM 588 at doses up to 5 × 107 CFU/g feed for 42 days showed no significant differences from controls in zootechnical performance, mortality, or morbidity. Finally, CBM 588 administered to turkeys at doses up to 2.5 × 107 CFU/g feed for 84 days produced no detrimental effects on zootechnical performance, hematology, or biochemical parameters. Some improvements in zootechnical performance were seen with CBM 588, including improved average daily gain (ADG) and feed conversion for broilers from days 1 to 21 as well as final body weight and overall ADG for turkeys. Overall, CBM 588 administered in feed at dose up to 5 × 107 CFU/g (broilers and piglets) or 2.5 × 107 CFU/g (turkeys) was shown to be safe and well-tolerated in all tested animals and may provide some nutritional benefit when added to standard commercial feedinfo:eu-repo/semantics/publishedVersio

    A THREE-PHASE INDUCTIVE SENSOR FOR IN VIVO MEASUREMENT OF ELECTRICAL ANISOTROPY OF BIOLOGICAL TISSUES

    Get PDF
    Biological tissue will have anisotropy in electrical conductivity, due to the orientation of muscular fibers or neural axons as well as the distribution of large size blood vessels. Thus, the in vivo measurement of electrical conductivity anisotropy can be used to detect deep-seated vessels in large organs such as the liver during surgeries. For diagnostic applications, decrease of anisotropy may indicate the existence of cancer in anisotropic tissues such as the white matter of the brain or the mammary gland in the breast.In this paper, we will introduce a new tri-phase induction method to drive rotating high-frequency electrical current in the tissue for the measurement of electrical conductivity anisotropy. In the measurement, three electromagnets are symmetrically placed on the tissue surface and driven by high-frequency alternative currents of  0 kHz, modulated  with 1 kHz 3-phase signals. In the center area of three magnets, magnetic fields are superimposed to produce a rotating induction current. This current produces electrical potentials among circularly arranged electrodes to be used to find the conductivity in each direction determined by the electrode pairs. To find the horizontal and vertical signal components, the measured potentials are amplified by a 2ch lock-in amplifier phase-locked with the 1 kHz reference signal. The superimposed current in the tissue was typically 45 micro Amperes when we applied 150 micro Tesla of magnetic field. We showed the validity of our method by conducting in vitro measurements with respect to artificially formed anisotropic materials and preliminary in vivo measurements on the pig’s liver.Compared to diffusion tensor MRI method, our anisotropy sensor is compact and advantageous for use during surgical operations because our method does not require strong magnetic field that may disturb ongoing surgical operations.Biological tissue will have anisotropy in electrical conductivity, due to the orientation of muscular fibers or neural axons as well as the distribution of large size blood vessels. Thus, the in vivo measurement of electrical conductivity anisotropy can be used to detect deep-seated vessels in large organs such as the liver during surgeries. For diagnostic applications, decrease of anisotropy may indicate the existence of cancer in anisotropic tissues such as the white matter of the brain or the mammary gland in the breast.In this paper, we will introduce a new tri-phase induction method to drive rotating high-frequency electrical current in the tissue for the measurement of electrical conductivity anisotropy. In the measurement, three electromagnets are symmetrically placed on the tissue surface and driven by high-frequency alternative currents of  0 kHz, modulated  with 1 kHz 3-phase signals. In the center area of three magnets, magnetic fields are superimposed to produce a rotating induction current. This current produces electrical potentials among circularly arranged electrodes to be used to find the conductivity in each direction determined by the electrode pairs. To find the horizontal and vertical signal components, the measured potentials are amplified by a 2ch lock-in amplifier phase-locked with the 1 kHz reference signal. The superimposed current in the tissue was typically 45 micro Amperes when we applied 150 micro Tesla of magnetic field. We showed the validity of our method by conducting in vitro measurements with respect to artificially formed anisotropic materials and preliminary in vivo measurements on the pig’s liver.Compared to diffusion tensor MRI method, our anisotropy sensor is compact and advantageous for use during surgical operations because our method does not require strong magnetic field that may disturb ongoing surgical operations

    Prediction Models for BMI and NAFLD

    Get PDF
    Nonalcoholic fatty liver disease (NAFLD) is closely associated with obesity. Disulfide bond‐forming oxidoreductase A‐like protein (DsbA‐L) is known to be a key molecule in protection against obesity and obesity‐induced inflammation. In the present study, we used a modeling and simulation approach in an attempt to develop body mass index (BMI) and BMI‐based NAFLD prediction models incorporating the DsbA‐L polymorphism to predict the BMI and NAFLD in 341 elderly subjects. A nonlinear mixed‐effect model best represented the sigmoidal relationship between the BMI and the logit function of the probability of NAFLD prevalence. The final models for BMI and NAFLD showed that DsbA‐L rs1917760 polymorphism, age, and gender were associated with the BMI, whereas gender, patatin‐like phospholipase 3 rs738409 polymorphism, HbA1c, and high‐density and low‐density lipoprotein cholesterol levels were associated with the risk of NAFLD. This information may aid in the genetic‐based prevention of obesity and NAFLD in the general elderly population

    Dissociation of Tau Deposits and Brain Atrophy in Early Alzheimer’s Disease: A Combined Positron Emission Tomography/Magnetic Resonance Imaging Study

    Get PDF
    The recent advent of tau-specific positron emission tomography (PET) has enabled in vivo assessment of tau pathology in Alzheimer’s disease (AD). However, because PET scanners have limited spatial resolution, the measured signals of small brain structures or atrophied areas are underestimated by partial volume effects (PVEs). The aim of this study was to determine whether partial volume correction (PVC) improves the precision of measures of tau deposits in early AD. We investigated tau deposits in 18 patients with amyloid-positive early AD and in 36 amyloid-negative healthy controls using 18F-THK5351 PET. For PVC, we applied the SPM toolbox PETPVE12. The PET images were then spatially normalized and subjected to voxel-based group analysis using SPM12 for comparison between the early AD patients and healthy controls. We also compared these two groups in terms of brain atrophy using voxel-based morphometry of MRI. We found widespread neocortical tracer retention predominantly in the posterior cingulate and precuneus areas, but also in the inferior temporal lobes, inferior parietal lobes, frontal lobes, and occipital lobes in the AD patients compared with the controls. The pattern of tracer retention was similar between before and after PVC, suggesting that PVC had little effect on the precision of tau load measures. Gray matter atrophy was detected in the medial/lateral temporal lobes and basal frontal lobes in the AD patients. Interestingly, only a few associations were found between atrophy and tau deposits, even after PVC. In conclusion, PVC did not significantly affect 18F-THK5351 PET measures of tau deposits. This discrepancy between tau deposits and atrophy suggests that tau load precedes atrophy

    Early-phase changes of extravascular lung water index as a prognostic indicator in acute respiratory distress syndrome patients

    Get PDF
    Background: The features of early-phase acute respiratory distress syndrome (ARDS) are leakage of fluid into the extravascular space and impairment of its reabsorption, resulting in extravascular lung water (EVLW) accumulation. The current study aimed to identify how the initial EVLW values and their change were associated with mortality. Methods: This was a post hoc analysis of the PiCCO Pulmonary Edema Study, a multicenter prospective cohort study that included 23 institutions. Single-indicator transpulmonary thermodilution-derived EVLW index (EVLWi) and conventional prognostic factors were prospectively collected over 48 h after enrollment. Associations between 28-day mortality and each variable including initial (on day 0), mean, maximum, and Δ (subtracting day 2 from day 0) EVLWi were evaluated. Results: We evaluated 192 ARDS patients (median age, 69 years (quartile, 24 years); Sequential Organ Failure Assessment (SOFA) score on admission, 10 (5); all-cause 28-day mortality, 31%). Although no significant differences were found in initial, mean, or maximum EVLWi, Δ-EVLWi was significantly higher (i.e., more reduction in EVLWi) in survivors than in non-survivors (3.0 vs. ?0.3 mL/kg, p = 0.006). Age, maximum, and Δ-SOFA scores and Δ-EVLW were the independent predictors for survival according to the Cox proportional hazard model. Patients with Δ-EVLWi > 2.8 had a significantly higher incidence of survival than those with Δ-EVLWi ? 2.8 (log-rank test, χ2 = 7.08, p = 0.008). Conclusions: Decrease in EVLWi during the first 48 h of ARDS may be associated with 28-day survival. Serial EVLWi measurements may be useful for understanding the pathophysiologic conditions in ARDS patients. A large multination confirmative trial is required
    corecore