2,694 research outputs found

    Propagating Waves Transverse to the Magnetic Field in a Solar Prominence

    Full text link
    We report an unusual set of observations of waves in a large prominence pillar which consist of pulses propagating perpendicular to the prominence magnetic field. We observe a huge quiescent prominence with the Solar Dynamics Observatory (SDO) Atmospheric Imaging Assembly (AIA) in EUV on 2012 October 10 and only a part of it, the pillar, which is a foot or barb of the prominence, with the Hinode Solar Optical Telescope (SOT) (in Ca II and H\alpha lines), Sac Peak (in H\alpha, H\beta\ and Na-D lines), THEMIS ("T\'elescope H\'eliographique pour l' Etude du Magn\'etisme et des Instabilit\'es Solaires") with the MTR (MulTi-Raies) spectropolarimeter (in He D_3 line). The THEMIS/MTR data indicates that the magnetic field in the pillar is essentially horizontal and the observations in the optical domain show a large number of horizontally aligned features on a much smaller scale than the pillar as a whole. The data is consistent with a model of cool prominence plasma trapped in the dips of horizontal field lines. The SOT and Sac Peak data over the 4 hour observing period show vertical oscillations appearing as wave pulses. These pulses, which include a Doppler signature, move vertically, perpendicular to the field direction, along thin quasi-vertical columns in the much broader pillar. The pulses have a velocity of propagation of about 10 km/s, a period about 300 sec, and a wavelength around 2000 km. We interpret these waves in terms of fast magneto-sonic waves and discuss possible wave drivers.Comment: Accepted for publication in The Astrophysical Journa

    Deformation pattern in vibrating microtubule: Structural mechanics study based on an atomistic approach

    Get PDF
    The mechanical properties of microtubules are of great importance for understanding their biological function and for applications in artificial devices. Although microtubule mechanics has been extensively studied both theoretically and experimentally, the relation to its molecular structure is understood only partially. Here, we report on the structural analysis of microtubule vibration modes calculated by an atomistic approach. Molecular dynamics was applied to refine the atomic structure of a microtubule and a C α elastic network model was analyzed for its normal modes. We mapped fluctuations and local deformations up to the level of individual aminoacid residues. The deformation is mode-shape dependent and principally different in α-tubulins and β-tubulins. Parts of the tubulin dimer sequence responding specifically to longitudinal and radial stress are identified. We show that substantial strain within a microtubule is located both in the regions of contact between adjacent dimers and in the body of tubulins. Our results provide supportive evidence for the generally accepted assumption that the mechanics of microtubules, including its anisotropy, is determined by the bonds between tubulins

    Correction: Electro-acoustic behavior of the mitotic spindle: A semi-classical coarse-grained model (PLoS ONE (2014) 9:1 (e86501) DOI: 10.1371/journal.pone.0086501)

    Get PDF
    There are errors in the values reported for parameters a, b, c, and V in Table 1. Please see the correct Table 1 here. [Table Preasented]. There is an error in the equation in the third sentence in the “The arrangement of microtubules” subsection of the Models section. The equation describing the distance from the origin of the coordinate system for MTOC placement on the x-axis is incorrect. Please see the correct equation here: [Formola Presented]. There is an error in the Eq (6) in the “Calculation of the intensity of the electric field” subsection of the Models section. Please see the correct Eq (6) here: [Formola Presented]. There is an error in the Eq (7) in the “Calculation of the intensity of the electric field” subsection of the Models section. Please see the correct Eq (7) here: [Formola Presented]. The authors confirm that the code used in the modelling do not contain the errors in parameters and equations, which affect only the description of the models. The results and conclusions are therefore unaffected by these corrections to the reporting of the methodology. There are errors in the scale of the y-axis shown for the bottom panel of Fig 10. Please see the correct Fig 10 here.[Figure Presented]

    Temperature Structure of a Coronal Cavity

    Get PDF
    we analyze the temperature structure of a coronal cavity observed in Aug. 2007. coronal cavities are long, low-density structures located over filament neutral lines and are often seen as dark elliptical features at the solar limb in white light, EUV and x-rays. when these structures erupt they form the cavity portions of CMEs. It is important to establish the temperature structure of cavities in order to understand the thermodynamics of cavities in relation to their three-dimensional magnetic structure. To analyze the temperature we compare temperature ratios of a series of iron lines observed by the Hinode/EUv Imaging spectrometer (EIS). We also use those lines to constrain a forward model of the emission from the cavity and streamer. The model assumes a coronal streamer with a tunnel-like cavity with elliptical cross-section and a Gaussian variation of height along the tunnel len~th. Temperature and density can be varied as a function of altitude both in the cavity and streamer. The general cavity morphology and the cavity and streamer density have already been modeled using data from STEREO's SECCHI/EUVI and Hinode/EIS (Gibson et al 2010 and Schmit & Gibson 2011)

    Universal relation between longitudinal and transverse conductivities in quantum Hall effect

    Full text link
    We show that any critical transition region between two adjacent Hall plateaus in either integer or fractional quantum Hall effect is characterized by a universal semi-circle relationship between the longitudinal and transverse conductivities, provided the sample is homogeneous and isotropic on a large scale. This conclusion is demonstrated both for the phase-coherent quantum transport as well as for the incoherent transport.Comment: REVTEX 3.0, 1 figure, 4 pages. SISSA-08179

    Invasion success of a Lessepsian symbiont-bearing foraminifera linked to high dispersal ability, preadaptation and suppression of sexual reproduction

    Get PDF
    Among the most successful Lessepsian invaders is the symbiont-bearing benthic foraminifera Amphistegina lobifera. In its newly conquered habitat, this prolific calcifier and ecosystem engineer is exposed to environmental conditions that exceed the range of its native habitat. To disentangle which processes facilitated the invasion success of A. lobifera into the Mediterranean Sea we analyzed a ~ 1400 bp sequence fragment covering the SSU and ITS gene markers to compare the populations from its native regions and along the invasion gradient. The genetic variability was studied at four levels: intra-genomic, population, regional and geographical. We observed that the invasion is not associated with genetic differentiation, but the invasive populations show a distinct suppression of intra-genomic variability among the multiple copies of the rRNA gene. A reduced genetic diversity compared to the Indopacific is observed already in the Red Sea populations and their high dispersal potential into the Mediterranean appears consistent with a bridgehead effect resulting from the postglacial expansion from the Indian Ocean into the Red Sea. We conclude that the genetic structure of the invasive populations reflects two processes: high dispersal ability of the Red Sea source population pre-adapted to Mediterranean conditions and a likely suppression of sexual reproduction in the invader. This discovery provides a new perspective on the cost of invasion in marine protists: The success of the invasive A. lobifera in the Mediterranean Sea comes at the cost of abandonment of sexual reproduction

    Anaerobic metabolism of Foraminifera thriving below the seafloor

    Get PDF
    Foraminifera are single-celled eukaryotes (protists) of large ecological importance, as well as environmental and paleoenvironmental indicators and biostratigraphic tools. In addition, they are capable of surviving in anoxic marine environments where they represent a major component of the benthic community. However, the cellular adaptations of Foraminifera to the anoxic environment remain poorly constrained. We sampled an oxic-anoxic transition zone in marine sediments from the Namibian shelf, where the genera Bolivina and Stainforthia dominated the Foraminifera community, and use metatranscriptomics to characterize Foraminifera metabolism across the different geochemical conditions. Relative Foraminifera gene expression in anoxic sediment increased an order of magnitude, which was confirmed in a 10-day incubation experiment where the development of anoxia coincided with a 20-40-fold increase in the relative abundance of Foraminifera protein encoding transcripts, attributed primarily to those involved in protein synthesis, intracellular protein trafficking, and modification of the cytoskeleton. This indicated that many Foraminifera were not only surviving but thriving, under the anoxic conditions. The anaerobic energy metabolism of these active Foraminifera was characterized by fermentation of sugars and amino acids, fumarate reduction, and potentially dissimilatory nitrate reduction. Moreover, the gene expression data indicate that under anoxia Foraminifera use the phosphogen creatine phosphate as an ATP store, allowing reserves of high-energy phosphate pool to be maintained for sudden demands of increased energy during anaerobic metabolism. This was co-expressed alongside genes involved in phagocytosis and clathrin-mediated endocytosis (CME). Foraminifera may use CME to utilize dissolved organic matter as a carbon and energy source, in addition to ingestion of prey cells via phagocytosis. These anaerobic metabolic mechanisms help to explain the ecological success of Foraminifera documented in the fossil record since the Cambrian period more than 500 million years ago
    • …
    corecore