715 research outputs found

    Improving classification for brain computer interfaces using transitions and a moving window

    Get PDF
    Proceeding of: Biosignals 2009. International Conference on Bio-inspired Systems and Signal Processing, BIOSTEC 2009. Porto (Portugal), 14-17 January 2009The context of this paper is the brain-computer interface (BCI), and in particular the classification of signals with machine learning methods. In this paper we intend to improve classification accuracy by taking advantage of a feature of BCIs: instances run in sequences belonging to the same class. In that case, the classiffication problem can be reformulated into two subproblems: detecting class transitions and determining the class for sequences of instances between transitions. We detect a transition when the Euclidean distance between the power spectra at two different times is larger than a threshold. To tackle the second problem, instances are classified by taking into account, not just the prediction for that instance, but a moving window of predictions for previous instances. Experimental results show that our transition detection method improves results for datasets of two out of three subjects of the BCI III competition. If the moving window is used, classification accuracy is further improved, depending on the window size.Publicad

    d0 Perovskite-Semiconductor Electronic Structure

    Full text link
    We address the low-energy effective Hamiltonian of electron doped d0 perovskite semiconductors in cubic and tetragonal phases using the k*p method. The Hamiltonian depends on the spin-orbit interaction strength, on the temperature-dependent tetragonal distortion, and on a set of effective-mass parameters whose number is determined by the symmetry of the crystal. We explain how these parameters can be extracted from angle resolved photo-emission, Raman spectroscopy, and magneto-transport measurements and estimate their values in SrTiO3

    Magnetization Dissipation in Ferromagnets from Scattering Theory

    Full text link
    The magnetization dynamics of ferromagnets are often formulated in terms of the Landau-Lifshitz-Gilbert (LLG) equation. The reactive part of this equation describes the response of the magnetization in terms of effective fields, whereas the dissipative part is parameterized by the Gilbert damping tensor. We formulate a scattering theory for the magnetization dynamics and map this description on the linearized LLG equation by attaching electric contacts to the ferromagnet. The reactive part can then be expressed in terms of the static scattering matrix. The dissipative contribution to the low-frequency magnetization dynamics can be described as an adiabatic energy pumping process to the electronic subsystem by the time-dependent magnetization. The Gilbert damping tensor depends on the time derivative of the scattering matrix as a function of the magnetization direction. By the fluctuation-dissipation theorem, the fluctuations of the effective fields can also be formulated in terms of the quasistatic scattering matrix. The theory is formulated for general magnetization textures and worked out for monodomain precessions and domain wall motions. We prove that the Gilbert damping from scattering theory is identical to the result obtained by the Kubo formalism.Comment: 15 pages, 1 figur

    Combining brain-computer interfaces and assistive technologies: state-of-the-art and challenges

    Get PDF
    In recent years, new research has brought the field of EEG-based Brain-Computer Interfacing (BCI) out of its infancy and into a phase of relative maturity through many demonstrated prototypes such as brain-controlled wheelchairs, keyboards, and computer games. With this proof-of-concept phase in the past, the time is now ripe to focus on the development of practical BCI technologies that can be brought out of the lab and into real-world applications. In particular, we focus on the prospect of improving the lives of countless disabled individuals through a combination of BCI technology with existing assistive technologies (AT). In pursuit of more practical BCIs for use outside of the lab, in this paper, we identify four application areas where disabled individuals could greatly benefit from advancements in BCI technology, namely,“Communication and Control”, “Motor Substitution”, “Entertainment”, and “Motor Recovery”. We review the current state of the art and possible future developments, while discussing the main research issues in these four areas. In particular, we expect the most progress in the development of technologies such as hybrid BCI architectures, user-machine adaptation algorithms, the exploitation of users’ mental states for BCI reliability and confidence measures, the incorporation of principles in human-computer interaction (HCI) to improve BCI usability, and the development of novel BCI technology including better EEG devices

    More than a cognitive experience: unfamiliarity, invalidation, and emotion in organizational learning

    Get PDF
    Literature on organizational learning (OL) lacks an integrative framework that captures the emotions involved as OL proceeds. Drawing on personal construct theory, we suggest that organizations learn where their members reconstrue meaning around questions of strategic significance for the organization. In this 5-year study of an electronics company, we explore the way in which emotions change as members perceive progress or a lack of progress around strategic themes. Our framework also takes into account whether OL involves experiences that are familiar or unfamiliar and the implications for emotions. We detected similar patterns of emotion arising over time for three different themes in our data, thereby adding to OL perspectives that are predominantly cognitive in orientation

    “He's Still the Winner in My Mind”: Maintaining the Collective Identity in Sport through Social Creativity and Group Affirmation

    Get PDF
    Social Creativity and Group Affirmation are two strategies by which individuals that identify with a sporting activity, team, group or individual may protect that sense of identification in light of negative events. This paper explores the use of such strategies through examining reactions to doping allegations surrounding Lance Armstrong to explain how members of two brand communities (one based on the brand of Armstrong as cyclist and the other on the brand of Armstrong as cancer survivor) maintain a sense of allegiance. Through undertaking a netnographic approach, six strategies were identified by members of these communities, three of which could be identified as Social Creativity Strategies (Lance Armstrong as “superhuman”, the notion of cycling as a ‘level playing field’, Armstrong as scapegoat) and three as Group Affirmation (Armstrong as a continuing inspiration, the Armstrong legacy, and denial). The two brand communities demonstrated differing patterns of maintenance, with those within the cycling community focusing more upon Social Creativity strategies, whereas those members of the Armstrong as cancer survivor brand tended to focus upon Group Affirmation strategies

    Dating of the oldest continental sediments from the Himalayan foreland basin

    Get PDF
    A detailed knowledge of Himalayan development is important for our wider understanding of several global processes, ranging from models of plateau uplift to changes in oceanic chemistry and climate(1-4). Continental sediments 55 Myr old found in a foreland basin in Pakistan(5) are, by more than 20 Myr, the oldest deposits thought to have been eroded from the Himalayan metamorphic mountain belt. This constraint on when erosion began has influenced models of the timing and diachrony of the India-Eurasia collision(6-8), timing and mechanisms of exhumation(9,10) and uplift(11), as well as our general understanding of foreland basin dynamics(12). But the depositional age of these basin sediments was based on biostratigraphy from four intercalated marl units(5). Here we present dates of 257 detrital grains of white mica from this succession, using the Ar-40-(39) Ar method, and find that the largest concentration of ages are at 36-40 Myr. These dates are incompatible with the biostratigraphy unless the mineral ages have been reset, a possibility that we reject on the basis of a number of lines of evidence. A more detailed mapping of this formation suggests that the marl units are structurally intercalated with the continental sediments and accordingly that biostratigraphy cannot be used to date the clastic succession. The oldest continental foreland basin sediments containing metamorphic detritus eroded from the Himalaya orogeny therefore seem to be at least 15-20 Myr younger than previously believed, and models based on the older age must be re-evaluated
    corecore