85 research outputs found

    Laser-induced fluorescence-based detection of atmospheric nitrogen dioxide and comparison of different techniques during the PARADE 2011 field campaign

    Get PDF
    GANDALF (Gas Analyzer for Nitrogen Dioxide Applying Laser-induced Fluorescence), a new instrument for the detection of nitrogen dioxide based on the laser-induced fluorescence (LIF) technique, is presented in this paper. GANDALF is designed for ground-based and airborne deployment with a robust calibration system. In the current set-up, it uses a multi-mode diode laser (447–450&thinsp;nm) and performs in situ, continuous, and autonomous measurements with a laser pulse repetition rate of 5&thinsp;MHz. The performance of GANDALF was tested during the summer of year 2011 (15 August–10 September) in a field experiment at Kleiner Feldberg, Germany. The location is within a forested region with an urban influence, where NOx levels were between 0.12 and 22 parts per billion by volume (ppb). Based on the field results, the limit of detection is estimated at 5–10 parts per trillion by volume (ppt) in 60&thinsp;s at a signal-to-noise ratio (SNR) of 2. The overall accuracy and precision of the instrument are better than 5&thinsp;% (1σ) and 0.5 %+3&thinsp;ppt (1σ&thinsp;min−1), respectively. A comparison of nitrogen dioxide measurements based on several techniques during the field campaign PARADE 2011 is presented to explore methodic differences.</p

    The atmospheric chemistry box model CAABA/MECCA-3.0

    Get PDF
    We present version 3.0 of the atmospheric chemistry box model CAABA/MECCA. In addition to a complete update of the rate coefficients to the most recent recommendations, a number of new features have been added: chemistry in multiple aerosol size bins; automatic multiple simulations reaching steady-state conditions; Monte-Carlo simulations with randomly varied rate coefficients within their experimental uncertainties; calculations along Lagrangian trajectories; mercury chemistry; more detailed isoprene chemistry; tagging of isotopically labeled species. Further changes have been implemented to make the code more user-friendly and to facilitate the analysis of the model results. Like earlier versions, CAABA/MECCA-3.0 is a community model published under the GNU General Public License

    Chemistry, transport and dry deposition of trace gases in the boundary layer over the tropical Atlantic Ocean and the Guyanas during the GABRIEL field campaign

    Get PDF
    We present a comparison of different Lagrangian and chemical box model calculations with measurement data obtained during the GABRIEL campaign over the tropical Atlantic Ocean and the Amazon rainforest in the Guyanas, October 2005. Lagrangian modelling of boundary layer (BL) air constrained by measurements is used to derive a horizontal gradient (&amp;asymp;5.6 pmol/mol km&lt;sup&gt;&amp;minus;1&lt;/sup&gt;) of CO from the ocean to the rainforest (east to west). This is significantly smaller than that derived from the measurements (16&amp;ndash;48 pmol/mol km&lt;sup&gt;&amp;minus;1&lt;/sup&gt;), indicating that photochemical production from organic precursors alone cannot explain the observed strong gradient. It appears that HCHO is overestimated by the Lagrangian and chemical box models, which include dry deposition but not exchange with the free troposphere (FT). The relatively short lifetime of HCHO implies substantial BL-FT exchange. The mixing-in of FT air affected by African and South American biomass burning at an estimated rate of 0.12 h&lt;sup&gt;&amp;minus;1&lt;/sup&gt; increases the CO and decreases the HCHO mixing ratios, improving agreement with measurements. A mean deposition velocity of 1.35 cm/s for H&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;2&lt;/sub&gt; over the ocean as well as over the rainforest is deduced assuming BL-FT exchange adequate to the results for CO. The measured increase of the organic peroxides from the ocean to the rainforest (&amp;asymp;0.66 nmol/mol d&lt;sup&gt;&amp;minus;1&lt;/sup&gt;) is significantly overestimated by the Lagrangian model, even when using high values for the deposition velocity and the entrainment rate. Our results point at either heterogeneous loss of organic peroxides and/or their radical precursors, underestimated photodissociation or missing reaction paths of peroxy radicals not forming peroxides in isoprene chemistry. We calculate a mean integrated daytime net ozone production (NOP) in the BL of (0.2&amp;plusmn;5.9) nmol/mol (ocean) and (2.4&amp;plusmn;2.1) nmol/mol (rainforest). The NOP strongly correlates with NO and has a positive tendency in the boundary layer over the rainforest

    Surface and Boundary Layer Exchanges of Volatile Organic Compounds, Nitrogen Oxides and Ozone During the GABRIEL Campaign

    Get PDF
    Abstract. We present an evaluation of sources, sinks and turbulent transport of nitrogen oxides, ozone and volatile organic compounds (VOC) in the boundary layer over French Guyana and Suriname during the October 2005 GABRIEL campaign by simulating observations with a single-column chemistry and climate model (SCM) along a zonal transect. Simulated concentrations of O3 and NO as well as NO2 photolysis rates over the forest agree well with observations when a small soil-biogenic NO emission flux was applied. This suggests that the photochemical conditions observed during GABRIEL reflect a pristine tropical low-NOx regime. The SCM uses a compensation point approach to simulate nocturnal deposition and daytime emissions of acetone and methanol and produces daytime boundary layer mixing ratios in reasonable agreement with observations. The area average isoprene emission flux, inferred from the observed isoprene mixing ratios and boundary layer height, is about half the flux simulated with commonly applied emission algorithms. The SCM nevertheless simulates too high isoprene mixing ratios, whereas hydroxyl concentrations are strongly underestimated compared to observations, which can at least partly explain the discrepancy. Furthermore, the model substantially overestimates the isoprene oxidation products methlyl vinyl ketone (MVK) and methacrolein (MACR) partly due to a simulated nocturnal increase due to isoprene oxidation. This increase is most prominent in the residual layer whereas in the nocturnal inversion layer we simulate a decrease in MVK and MACR mixing ratios, assuming efficient removal of MVK and MACR. Entrainment of residual layer air masses, which are enhanced in MVK and MACR and other isoprene oxidation products, into the growing boundary layer poses an additional sink for OH which is thus not available for isoprene oxidation. Based on these findings, we suggest pursuing measurements of the tropical residual layer chemistry with a focus on the nocturnal depletion of isoprene and its oxidation products.JRC.H.2-Climate chang

    Constraints on instantaneous ozone production rates and regimes during DOMINO derived using in-situ OH reactivity measurements

    Get PDF
    In this study air masses are characterized in terms of their total OH reactivity which is a robust measure of the reactive air pollutant loading . The measurements were performed during the DOMINO campaign (Diel Oxidant Mechanisms In relation to Nitrogen Oxides) held from 21/11/2008 to 08/12/2008 at the Atmospheric Sounding Station - El Arenosillo (37.1° N-6.7° W, 40 m a.s.l.). The site was frequently impacted by marine air masses (arriving at the site from the southerly sector) and air masses from the cities of Huelva (located NW of the site), Seville and Madrid (located NNE of the site). OH reactivity values showed strong wind sector dependence. North eastern continental air masses were characterized by the highest OH reactivities (average: 31.4 ± 4.5 s−1; range of average diel values: 21.3-40.5 s−1), followed by north western industrial air masses (average: 13.8 ± 4.4 s−1; range of average diel values: 7-23.4 s−1) and marine air masses (average: 6.3 ± 6.6 s−1; range of average diel values: below detection limit −21.7 s−1), respectively. The average OH reactivity for the entire campaign period was ~18 s−1 and no pronounced variation was discernible in the diel profiles with the exception of relatively high values from 09:00 to 11:00 UTC on occasions when air masses arrived from the north western and southern wind sectors. The measured OH reactivity was used to constrain both diel instantaneous ozone production potential rates and regimes. Gross ozone production rates at the site were generally limited by the availability of NOx with peak values of around 20 ppbV O3 h−1. Using the OH reactivity based approach, derived ozone production rates indicate that if NOx would no longer be the limiting factor in air masses arriving from the continental north eastern sector, peak ozone production rates could double. We suggest that the new combined approach of in-situ fast measurements of OH reactivity, nitrogen oxides and peroxy radicals for constraining instantaneous ozone production rates, could significantly improve analyses of upwind point sources and their impact on regional ozone levels

    Hydroxyl radicals in the tropical troposphere over the Suriname rainforest: airborne measurements

    Get PDF
    Direct measurements of OH and HO&lt;sub&gt;2&lt;/sub&gt; over a tropical rainforest were made for the first time during the GABRIEL campaign in October 2005, deploying the custom-built HORUS instrument (HydrOxyl Radical measurement Unit based on fluorescence Spectroscopy), adapted to fly in a Learjet wingpod. Biogenic hydrocarbon emissions were expected to strongly reduce the OH and HO&lt;sub&gt;2&lt;/sub&gt; mixing ratios as the air is transported from the ocean over the forest. However, surprisingly high mixing ratios of both OH and HO&lt;sub&gt;2&lt;/sub&gt; were encountered in the boundary layer over the rainforest. &lt;br&gt;&lt;br&gt; The HORUS instrumentation and calibration methods are described in detail and the measurement results obtained are discussed. The extensive dataset collected during GABRIEL, including measurements of many other trace gases and photolysis frequencies, has been used to quantify the main sources and sinks of OH. Comparison of these measurement-derived formation and loss rates of OH indicates strong previously overlooked recycling of OH in the boundary layer over the tropical rainforest, occurring in chorus with isoprene emission

    Composition of Clean Marine Air and Biogenic Influences on VOCs during the MUMBA Campaign

    Get PDF
    Volatile organic compounds (VOCs) are important precursors to the formation of ozone and fine particulate matter, the two pollutants of most concern in Sydney, Australia. Despite this importance, there are very few published measurements of ambient VOC concentrations in Australia. In this paper, we present mole fractions of several important VOCs measured during the campaign known as MUMBA (Measurements of Urban, Marine and Biogenic Air) in the Australian city of Wollongong (34°S). We particularly focus on measurements made during periods when clean marine air impacted the measurement site and on VOCs of biogenic origin. Typical unpolluted marine air mole fractions during austral summer 2012-2013 at latitude 34°S were established for CO2 (391.0 ± 0.6 ppm), CH4 (1760.1 ± 0.4 ppb), N2O (325.04 ± 0.08 ppb), CO (52.4 ± 1.7 ppb), O3 (20.5 ± 1.1 ppb), acetaldehyde (190 ± 40 ppt), acetone (260 ± 30 ppt), dimethyl sulphide (50 ± 10 ppt), benzene (20 ± 10 ppt), toluene (30 ± 20 ppt), C8H10 aromatics (23 ± 6 ppt) and C9H12 aromatics (36 ± 7 ppt). The MUMBA site was frequently influenced by VOCs of biogenic origin from a nearby strip of forested parkland to the east due to the dominant north-easterly afternoon sea breeze. VOCs from the more distant densely forested escarpment to the west also impacted the site, especially during two days of extreme heat and strong westerly winds. The relative amounts of different biogenic VOCs observed for these two biomes differed, with much larger increases of isoprene than of monoterpenes or methanol during the hot westerly winds from the escarpment than with cooler winds from the east. However, whether this was due to different vegetation types or was solely the result of the extreme temperatures is not entirely clear. We conclude that the clean marine air and biogenic signatures measured during the MUMBA campaign provide useful information about the typical abundance of several key VOCs and can be used to constrain chemical transport model simulations of the atmosphere in this poorly sampled region of the world. © 2019 The Author

    Hydroxyl radicals in the tropical troposphere over the Suriname rainforest: airborne measurements

    Get PDF
    Direct measurements of OH and HO&lt;sub&gt;2&lt;/sub&gt; over a tropical rainforest were made for the first time during the GABRIEL campaign in October 2005, deploying the custom-built HORUS instrument (HydrOxyl Radical measurement Unit based on fluorescence Spectroscopy), adapted to fly in a Learjet wingpod. Biogenic hydrocarbon emissions were expected to strongly reduce the OH and HO&lt;sub&gt;2&lt;/sub&gt; mixing ratios as the air is transported from the ocean over the forest. However, surprisingly high mixing ratios of both OH and HO&lt;sub&gt;2&lt;/sub&gt; were encountered in the boundary layer over the rainforest. &lt;br&gt;&lt;br&gt; The HORUS instrumentation and calibration methods are described in detail and the measurement results obtained are discussed. The extensive dataset collected during GABRIEL, including measurements of many other trace gases and photolysis frequencies, has been used to quantify the main sources and sinks of OH. Comparison of these measurement-derived formation and loss rates of OH indicates strong previously overlooked recycling of OH in the boundary layer over the tropical rainforest, occurring in chorus with isoprene emission

    Hydroxyl radicals in the tropical troposphere over the Suriname rainforest: comparison of measurements with the box model MECCA

    Get PDF
    As a major source region of the hydroxyl radical OH, the Tropics largely control the oxidation capacity of the atmosphere on a global scale. However, emissions of hydrocarbons from the tropical rainforest that react rapidly with OH can potentially deplete the amount of OH and thereby reduce the oxidation capacity. The airborne GABRIEL field campaign in equatorial South America (Suriname) in October 2005 investigated the influence of the tropical rainforest on the HOx budget (HOx = OH + HO2). The first observations of OH and HO2 over a tropical rainforest are compared to steady state concentrations calculated with the atmospheric chemistry box model MECCA. The important precursors and sinks for HOx chemistry, measured during the campaign, are used as constraining parameters for the simulation of OH and HO2. Significant underestimations of HOx are found by the model over land during the afternoon, with mean ratios of observation to model of 12.2 ± 3.5 and 4.1 ± 1.4 for OH and HO2, respectively. The discrepancy between measurements and simulation results is correlated to the abundance of isoprene. While for low isoprene mixing ratios (above ocean or at altitudes \u3e3 km), observation and simulation agree fairly well, for mixing ratios \u3e200 pptV (rainforest) the model tends to underestimate the HOx observations as a function of isoprene. Box model simulations have been performed with the condensed chemical mechanism of MECCA and with the detailed isoprene reaction scheme of MCM, resulting in similar results for HOx concentrations. Simulations with constrained HO2 concentrations show that the conversion from HO2 to OH in the model is too low. However, by neglecting the isoprene chemistry in the model, observations and simulations agree much better. An OH source similar to the strength of the OH sink via isoprene chemistry is needed in the model to resolve the discrepancy. A possible explanation is that the oxidation of isoprene by OH not only dominates the removal of OH but also produces it in a similar amount. Several additional reactions which directly produce OH have been implemented into the box model, suggesting that upper limits in producing OH are still not able to reproduce the observations (improvement by factors of ≈2.4 and ≈2 for OH and HO2, respectively). We determine that OH has to be recycled to 94% instead of the simulated 38% to match the observations, which is most likely to happen in the isoprene degradation process, otherwise additional sources are required

    Technical Note: Formal blind intercomparison of HO<sub>2</sub> measurements in the atmosphere simulation chamber SAPHIR during the HOxComp campaign

    Get PDF
    Hydroperoxy radical (HO<sub>2</sub>) concentrations were measured during the formal blind intercomparison campaign HOxComp carried out in Jülich, Germany, in 2005. Three instruments detected HO<sub>2</sub> via chemical conversion to hydroxyl radicals (OH) and subsequent detection of the sum of OH and HO<sub>2</sub> by laser induced fluorescence (LIF). All instruments were based on the same detection and calibration scheme. Because measurements by a MIESR instrument failed during the campaign, no absolute reference measurement was available, so that the accuracy of individual instruments could not be addressed. Instruments sampled ambient air for three days and were attached to the atmosphere simulation chamber SAPHIR during the second part of the campaign. Six experiments of one day each were conducted in SAPHIR, where air masses are homogeneously mixed, in order to investigate the performance of instruments and to determine potential interferences of measurements under well-controlled conditions. Linear correlation coefficients (<i>R</i><sup>2</sup>) between measurements of the LIF instruments are generally high and range from 0.82 to 0.98. However, the agreement between measurements is variable. The regression analysis of the entire data set of measurements in SAPHIR yields slopes between 0.69 to 1.26 and intercepts are smaller than typical atmospheric daytime concentrations (less than 1 pptv). The quality of fit parameters improves significantly, when data are grouped into data subsets of similar water vapor concentrations. Because measurements of LIF instruments were corrected for a well-characterized water dependence of their sensitivities, this indicates that an unknown factor related to water vapor affected measurements in SAPHIR. Measurements in ambient air are also well-correlated, but regression parameters differ from results obtained from SAPHIR experiments. This could have been caused by differences in HO<sub>2</sub> concentrations in the sampled air at the slightly different locations of instruments
    • …
    corecore