23 research outputs found

    Electrical Mobility Spectrometer Using a Diethylene Glycol Condensation Particle Counter for Measurement of Aerosol Size Distributions Down to 1 nm. Aerosol Sci.

    Get PDF
    We report a new scanning mobility particle spectrometer (SMPS) for measuring number size distributions of particles down to ∼1 nm mobility diameter. This SMPS includes an aerosol charger, a TSI 3085 nano differential mobility analyzer (nanoDMA), an ultrafine condensation particle counter (UCPC) using diethylene glycol (DEG) as the working fluid, and a conventional butanol CPC (the "booster") to detect the small droplets leaving the DEG UCPC. The response of the DEG UCPC to negatively charged sodium chloride particles with mobility diameters ranging from 1-6 nm was measured. The sensitivity of the DEG UCPC to particle composition was also studied by comparing its response to positively charged 1.47 and 1.70 nm tetra-alkyl ammonium ions, sodium chloride, and silver particles. A high resolution differential mobility analyzer was used to generate the test particles. These results show that the response of this UCPC to sub-2 nm particles is sensitive to particle composition. The applicability of the new SMPS for atmospheric measurement was demonstrated during the Nucleation and Cloud Condensation Nuclei (NCCN) field campaign (Atlanta, Georgia, summer 2009). We operated the instrument at saturator and condenser temperatures that allowed the efficient detection of sodium chloride particles but not of air ions having the same mobility. We found that particles as small as 1 nm were detected during nucleation events but not at other times. Factors affecting size distribution measurements, including aerosol charging in the 1-10 nm size range, are discussed. For the charger used in this study, bipolar charging was found to be more effective for sub-2 nm particles than unipolar charging. No ion induced nucleation inside the charger was observed during the NCCN campaign

    Arctic warming by abundant fine sea salt aerosols from blowing snow

    Get PDF
    The Arctic warms nearly four times faster than the global average, and aerosols play an increasingly important role in Arctic climate change. In the Arctic, sea salt is a major aerosol component in terms of mass concentration during winter and spring. However, the mechanisms of sea salt aerosol production remain unclear. Sea salt aerosols are typically thought to be relatively large in size but low in number concentration, implying that their influence on cloud condensation nuclei population and cloud properties is generally minor. Here we present observational evidence of abundant sea salt aerosol production from blowing snow in the central Arctic. Blowing snow was observed more than 20% of the time from November to April. The sublimation of blowing snow generates high concentrations of fine-mode sea salt aerosol (diameter below 300 nm), enhancing cloud condensation nuclei concentrations up to tenfold above background levels. Using a global chemical transport model, we estimate that from November to April north of 70° N, sea salt aerosol produced from blowing snow accounts for about 27.6% of the total particle number, and the sea salt aerosol increases the longwave emissivity of clouds, leading to a calculated surface warming of +2.30 W m−2 under cloudy sky conditions

    Recent advances in understanding secondary organic aerosol : Implications for global climate forcing

    Get PDF
    Anthropogenic emissions and land use changes have modified atmospheric aerosol concentrations and size distributions over time. Understanding preindustrial conditions and changes in organic aerosol due to anthropogenic activities is important because these features (1) influence estimates of aerosol radiative forcing and (2) can confound estimates of the historical response of climate to increases in greenhouse gases. Secondary organic aerosol (SOA), formed in the atmosphere by oxidation of organic gases, represents a major fraction of global submicron-sized atmospheric organic aerosol. Over the past decade, significant advances in understanding SOA properties and formation mechanisms have occurred through measurements, yet current climate models typically do not comprehensively include all important processes. This review summarizes some of the important developments during the past decade in understanding SOA formation. We highlight the importance of some processes that influence the growth of SOA particles to sizes relevant for clouds and radiative forcing, including formation of extremely low volatility organics in the gas phase, acid-catalyzed multiphase chemistry of isoprene epoxydiols, particle-phase oligomerization, and physical properties such as volatility and viscosity. Several SOA processes highlighted in this review are complex and interdependent and have nonlinear effects on the properties, formation, and evolution of SOA. Current global models neglect this complexity and nonlinearity and thus are less likely to accurately predict the climate forcing of SOA and project future climate sensitivity to greenhouse gases. Efforts are also needed to rank the most influential processes and nonlinear process-related interactions, so that these processes can be accurately represented in atmospheric chemistry-climate models. Plain Language Summary Secondary organic aerosol (SOA), formed in the atmosphere by oxidation of organic gases, often represents a major fraction of global submicron-sized atmospheric organic aerosol. Myriad processes affect SOA formation, several of which relate to interactions between natural biogenic emissions and predominantly anthropogenic species such as SO2, NOx, sulfate, nitrate, and ammonium. Many of these key processes are nonlinear and can be synergistic or act to compensate each other in terms of climate forcing. Current atmospheric chemistry-climate models mostly do not treat these processes. We highlight a number of process-level mechanisms related to the interactions between anthropogenic and biogenic SOA precursors, for which the corresponding impacts on the radiative effects of SOA need to be investigated in atmospheric chemistry-climate models. Ultimately, climate models need to capture enough important features of the chemical and dynamic evolution of SOA, in terms of both aerosol number and aerosol mass, as a function of atmospheric variables and anthropogenic perturbations to reasonably predict the spatial and temporal distributions of SOA. A better understanding of SOA formation mechanisms and physical properties is needed to improve estimates of the extent to which anthropogenic emissions and land use changes have modified global aerosol concentrations and size distributions since preindustrial times.Peer reviewe

    Optimization of laminar flow ultrafine condensation particle counters for the enhanced detection of 1 nm condensation nuclei, Aerosol Sci

    No full text
    This paper describes simple modifications to thermally diffusive laminar flow ultrafine condensation particle counters (UCPCs) that allow detection of ∼1 nm condensation nuclei with much higher efficiencies than have been previously reported. These nondestructive modifications were applied to a commercial butanolbased UCPC (TSI 3025A) and to a diethylene glycol-based UCPC (UMN DEG-UCPC). Size and charge dependent detection efficiencies using the modified UCPCs (BNL 3025A and BNL DEG-UCPC) were measured with high resolution mobility classified aerosols composed of NaCl, W, molecular ion standards of tetraalkyl ammonium bromide, and neutralizer-generated ions. With negatively charged NaCl aerosol, the BNL 3025A and BNL DEG-UCPC achieved detection efficiencies of 37% (90× increase over TSI 3025A) at 1.68 nm mobility diameter (1.39 nm geometric diameter) and 23% (8× increase over UMN DEG-UCPC) at 1.19 nm mobility diameter (0.89 nm geometric diameter), respectively. Operating conditions for both UCPCs were identified that allowed negatively charged NaCl and W particles, but not negative ions of exactly the same mobility size, to be efficiently detected. This serendipitous material dependence, which is not fundamentally understood, suggests that vapor condensation might sometimes allow for the discrimination between air "ions" and charged "particles." As a detector in a scanning mobility particle spectrometer (SMPS), a UCPC with this strong material dependence would allow for more accurate measurements of sub-2 nm aerosol size distributions due to the reduced interference from neutralizer-generated ions and atmospheric ions, and provide increased sensitivity for the determination of nucleation rates and initial particle growth rates

    ARM_AMF3_SEUS_Deployment

    No full text

    Preliminary investigation of a water-based method for fast integrating mobility spectrometry

    No full text
    <p>A water-based condensational growth channel was developed for imaging mobility-separated particles within a parallel plate separation channel of the Fast Integrated Mobility Spectrometer (FIMS). Reported are initial tests of that system, in which the alcohol condenser of the FIMS was replaced by a water-based condensational growth channel. Tests with monodispersed sodium chloride aerosol verify that the water-condensational growth maintained the laminar flow, while providing sufficient growth for particle imaging. Particle positions mapped onto particle mobility, in accordance with theoretical expectations. Particles ranging in size from 12 nm to 100 nm were counted with the same efficiency as with a butanol-based ultrafine particle counter, once inlet and line losses were taken into account.</p> <p>Copyright © 2017 American Association for Aerosol Research</p
    corecore