15 research outputs found

    Sox2 Cooperates with Inflammation-Mediated Stat3 Activation in the Malignant Transformation of Foregut Basal Progenitor Cells

    Get PDF
    SummarySox2 regulates the self-renewal of multiple types of stem cells. Recent studies suggest it also plays oncogenic roles in the formation of squamous carcinoma in several organs, including the esophagus where Sox2 is predominantly expressed in the basal progenitor cells of the stratified epithelium. Here, we use mouse genetic models to reveal a mechanism by which Sox2 cooperates with microenvironmental signals to malignantly transform epithelial progenitor cells. Conditional overexpression of Sox2 in basal cells expands the progenitor population in both the esophagus and forestomach. Significantly, carcinoma only develops in the forestomach, where pathological progression correlates with inflammation and nuclear localization of Stat3 in progenitor cells. Importantly, co-overexpression of Sox2 and activated Stat3 (Stat3C) also transforms esophageal basal cells but not the differentiated suprabasal cells. These findings indicate that basal stem/progenitor cells are the cells of origin of squamous carcinoma and that cooperation between Sox2 and microenvironment-activated Stat3 is required for Sox2-driven tumorigenesis

    BMP-driven NRF2 activation in esophageal basal cell differentiation and eosinophilic esophagitis

    Get PDF
    Tissue homeostasis requires balanced self-renewal and differentiation of stem/progenitor cells, especially in tissues that are constantly replenished like the esophagus. Disruption of this balance is associated with pathological conditions, including eosinophilic esophagitis (EoE), in which basal progenitor cells become hyperplastic upon proinflammatory stimulation. However, how basal cells respond to the inflammatory environment at the molecular level remains undetermined. We previously reported that the bone morphogenetic protein (BMP) signaling pathway is critical for epithelial morphogenesis in the embryonic esophagus. Here, we address how this pathway regulates tissue homeostasis and EoE development in the adult esophagus. BMP signaling was specifically activated in differentiated squamous epithelium, but not in basal progenitor cells, which express the BMP antagonist follistatin. Previous reports indicate that increased BMP activity promotes Barrett’s intestinal differentiation; however, in mice, basal progenitor cell–specific expression of constitutively active BMP promoted squamous differentiation. Moreover, BMP activation increased intracellular ROS levels, initiating an NRF2-mediated oxidative response during basal progenitor cell differentiation. In both a mouse EoE model and human biopsies, reduced squamous differentiation was associated with high levels of follistatin and disrupted BMP/NRF2 pathways. We therefore propose a model in which normal squamous differentiation of basal progenitor cells is mediated by BMP-driven NRF2 activation and basal cell hyperplasia is promoted by disruption of BMP signaling in EoE

    C4-HSL aptamers for blocking qurom sensing and inhibiting biofilm formation in Pseudomonas aeruginosa and its structure prediction and analysis.

    No full text
    This study aimed to screen DNA aptamers against the signal molecule C4-HSL of the rhl system for the inhibition of biofilm formation of Pseudomonas aeruginosa using an improved systematic evolution of ligand by exponential enrichment (SELEX) method based on a structure-switching fluorescent activating bead. The aptamers against the C4-HSL with a high affinity and specifity were successfully obtained and evaluated in real-time by this method. Results of biofilm inhibition experiments in vitro showed that the biofilm formation of P. aeruginosa was efficiently reduced to about 1/3 by the aptamers compared with that of the groups without the aptamers. Independent secondary structure simulation and computer-aided tertiary structure prediction (3dRNA) showed that the aptamers contained a highly conserved Y-shaped structural unit. Therefore, this study benefits the search for new methods for the detection and treatment of P. aeruginosa biofilm formation

    Coordinate lentiviral expression of Cre recombinase and RFP/EGFP mediated by FMDV 2A and analysis of Cre activity

    No full text
    The site-specific recombination mediated by Cre recombinase has been utilized extensively in genetic engineering and gene function studies. Efficient delivery of a Cre enzyme with enzymatic activity and the ability to monitor the enzyme expression are required in applications, and lentiviral constructs with a fluorescent protein (FP) to report the Cre expression are suitable for most studies. However, the current lentiviral vector systems have some deficiencies in precise reporting the Cre expression through fluorescence. To solve the problem, we generated a lentiviral system with Cre and RFP or EGFP bridged by an FMDV 2A sequence in an open reading frame expressed by a CMV promoter. We then examined the capabilities of the constructs to package with VSVG into infectious virus and to mediate expression of the Cre enzyme and fluorescent reporter. Furthermore, we monitored the bioactivities of the expressed products. We demonstrated the coordinate expression of the enzyme and the reporter. The expressed Cre was efficient at removing LoxP-flanked fragments in cells and did not show obvious cellular toxicity, and the expressed FPs allowed direct observation under fluorescent microscope. Therefore, the conjugation of CMV-Cre-2A-FP represents a significant improvement to the current lentiviral Cre delivery systems for obtaining a required Cre activity while accurately monitoring its presence. Our study also provides information concerning application of the established vector system. J. Cell. Biochem. 113: 29092919, 2012. (C) 2012 Wiley Periodicals, Inc.National Basic Research Program of China [2009CB941601

    Targeting the SOX2/CDP protein complex with a peptide suppresses the malignant progression of esophageal squamous cell carcinoma

    No full text
    Abstract Emerging evidence indicates that SOX2 is an oncogene for esophageal squamous cell carcinoma (ESCC). However, direct targeting of SOX2 is not feasible given that this transcription factor plays important roles in the maintenance of tissues such as the brain. Here, we identified CDP (Homeobox protein cut-like 1 or CASP) as a unique SOX2 binding partner enriched in ESCC with Duolink proximity ligation assay, bimolecular fluorescence complementation (BiFc) and immunoprecipitation. We then screened a peptide aptamer library using BiFc and immunoprecipitation and identified several peptide aptamers, including P58, that blocked the CDP/SOX2 interaction, leading to the inhibition of ESCC progress in vitro and in vivo. Upon administration, synthetic peptide P58, containing the YGRKKRRQRRR cell-penetrating peptide and the fluorophore TAMRA, also blocked the growth and metastasis of ESCC in both mice and zebrafish. Therefore, targeting the SOX2 binding partner CDP with peptide P58 offers an alternative avenue to treat ESCC with increased SOX2 levels

    BMP-driven NRF2 activation in esophageal basal cell differentiation and eosinophilic esophagitis

    No full text
    Tissue homeostasis requires balanced self-renewal and differentiation of stem/progenitor cells, especially in tissues that are constantly replenished like the esophagus. Disruption of this balance is associated with pathological conditions, including eosinophilic esophagitis (EoE), in which basal progenitor cells become hyperplastic upon proinflammatory stimulation. However, how basal cells respond to the inflammatory environment at the molecular level remains undetermined. We previously reported that the bone morphogenetic protein (BMP) signaling pathway is critical for epithelial morphogenesis in the embryonic esophagus. Here, we address how this pathway regulates tissue homeostasis and EoE development in the adult esophagus. BMP signaling was specifically activated in differentiated squamous epithelium, but not in basal progenitor cells, which express the BMP antagonist follistatin. Previous reports indicate that increased BMP activity promotes Barrett’s intestinal differentiation; however, in mice, basal progenitor cell–specific expression of constitutively active BMP promoted squamous differentiation. Moreover, BMP activation increased intracellular ROS levels, initiating an NRF2-mediated oxidative response during basal progenitor cell differentiation. In both a mouse EoE model and human biopsies, reduced squamous differentiation was associated with high levels of follistatin and disrupted BMP/NRF2 pathways. We therefore propose a model in which normal squamous differentiation of basal progenitor cells is mediated by BMP-driven NRF2 activation and basal cell hyperplasia is promoted by disruption of BMP signaling in EoE
    corecore