4,190 research outputs found

    Interpretation of scanning tunneling quasiparticle interference and impurity states in cuprates

    Full text link
    We apply a recently developed method combining first principles based Wannier functions with solutions to the Bogoliubov-de Gennes equations to the problem of interpreting STM data in cuprate superconductors. We show that the observed images of Zn on the surface of Bi2_2Sr2_2CaCu2_2O8_8 can only be understood by accounting for the tails of the Cu Wannier functions, which include significant weight on apical O sites in neighboring unit cells. This calculation thus puts earlier crude "filter" theories on a microscopic foundation and solves a long standing puzzle. We then study quasiparticle interference phenomena induced by out-of-plane weak potential scatterers, and show how patterns long observed in cuprates can be understood in terms of the interference of Wannier functions above the surface. Our results show excellent agreement with experiment and enable a better understanding of novel phenomena in the cuprates via STM imaging.Comment: 5 pages, 5 figures, published version (Supplemental Material: 5 pages, 11 figures) for associated video file, see http://itp.uni-frankfurt.de/~kreisel/QPI_BSCCO_BdG_p_W.mp

    Evolution of Fermion Pairing from Three to Two Dimensions

    Full text link
    We follow the evolution of fermion pairing in the dimensional crossover from 3D to 2D as a strongly interacting Fermi gas of 6^6Li atoms becomes confined to a stack of two-dimensional layers formed by a one-dimensional optical lattice. Decreasing the dimensionality leads to the opening of a gap in radio-frequency spectra, even on the BCS-side of a Feshbach resonance. The measured binding energy of fermion pairs closely follows the theoretical two-body binding energy and, in the 2D limit, the zero-temperature mean-field BEC-BCS theory.Comment: 5 pages, 4 figure

    Relevance of the Heisenberg-Kitaev model for the honeycomb lattice iridates A_2IrO_3

    Full text link
    Combining thermodynamic measurements with theoretical density functional and thermodynamic calculations we demonstrate that the honeycomb lattice iridates A2IrO3 (A = Na, Li) are magnetically ordered Mott insulators where the magnetism of the effective spin-orbital S = 1/2 moments can be captured by a Heisenberg-Kitaev (HK) model with Heisenberg interactions beyond nearest-neighbor exchange. Experimentally, we observe an increase of the Curie-Weiss temperature from \theta = -125 K for Na2IrO3 to \theta = -33 K for Li2IrO3, while the antiferromagnetic ordering temperature remains roughly the same T_N = 15 K for both materials. Using finite-temperature functional renormalization group calculations we show that this evolution of \theta, T_N, the frustration parameter f = \theta/T_N, and the zig-zag magnetic ordering structure suggested for both materials by density functional theory can be captured within this extended HK model. Combining our experimental and theoretical results, we estimate that Na2IrO3 is deep in the magnetically ordered regime of the HK model (\alpha \approx 0.25), while Li2IrO3 appears to be close to a spin-liquid regime (0.6 < \alpha < 0.7).Comment: Version accepted for publication in PRL. Additional DFT and thermodynamic calculations have been included. 6 pages of supplementary material include

    Long range magnetic ordering in Na2_2IrO3_3

    Full text link
    We report a combined experimental and theoretical investigation of the magnetic structure of the honeycomb lattice magnet Na2_2IrO3_3, a strong candidate for a realization of a gapless spin-liquid. Using resonant x-ray magnetic scattering at the Ir L3_3-edge, we find 3D long range antiferromagnetic order below TN_N=13.3 K. From the azimuthal dependence of the magnetic Bragg peak, the ordered moment is determined to be predominantly along the {\it a}-axis. Combining the experimental data with first principles calculations, we propose that the most likely spin structure is a novel "zig-zag" structure

    Temperature dependent d-d excitations in manganites probed by resonant inelastic x-ray scattering

    Full text link
    We report the observation of temperature dependent electronic excitations in various manganites utilizing resonant inelastic x-ray scattering (RIXS) at the Mn K-edge. Excitations were observed between 1.5 and 16 eV with temperature dependence found as high as 10 eV. The change in spectral weight between 1.5 and 5 eV was found to be related to the magnetic order and independent of the conductivity. On the basis of LDA+U and Wannier function calculations, this dependence is associated with intersite d-d excitations. Finally, the connection between the RIXS cross-section and the loss function is addressed.Comment: 5 pages, 5 figure

    Universal quasiparticle decoherence in hole- and electron-doped high-Tc cuprates

    Full text link
    We use angle-resolved photoemission to unravel the quasiparticle decoherence process in the high-TcT_c cuprates. The coherent band is highly renormalized, and the incoherent part manifests itself as a nearly vertical ``dive'' in the EE-kk intensity plot that approaches the bare band bottom. We find that the coherence-incoherence crossover energies in the hole- and electron-doped cuprates are quite different, but scale to their corresponding bare bandwidth. This rules out antiferromagnetic fluctuations as the main source for decoherence. We also observe the coherent band bottom at the zone center, whose intensity is strongly suppressed by the decoherence process. Consequently, the coherent band dispersion for both hole- and electron-doped cuprates is obtained, and is qualitatively consistent with the framework of Gutzwiller projection.Comment: 4 pages, 4 figure

    Molecular Evolution of the Substrate Utilization Strategies and Putative Virulence Factors in Mosquito-Associated Spiroplasma Species

    Get PDF
    Comparative genomics provides a powerful tool to characterize the genetic differences among species that may be linked to their phenotypic variations. In the case of mosquito-associated Spiroplasma species, such approach is useful for the investigation of their differentiations in substrate utilization strategies and putative virulence factors. Among the four species that have been assessed for pathogenicity by artificial infection experiments, Spiroplasma culicicola and S. taiwanense were found to be pathogenic, whereas S. diminutum and S. sabaudiense were not. Intriguingly, based on the species phylogeny, the association with mosquito hosts and the gain or loss of pathogenicity in these species appears to have evolved independently. Through comparison of their complete genome sequences, we identified the genes and pathways that are shared by all or specific to one of these four species. Notably, we found that a glycerol-3-phosphate oxidase gene (glpO) is present in S. culicicola and S. taiwanense but not in S. diminutum or S. sabaudiense. Because this gene is involved in the production of reactive oxygen species and has been demonstrated as a major virulence factor in Mycoplasma, this distribution pattern suggests that it may be linked to the observed differences in pathogenicity among these species as well. Moreover, through comparative analysis with other Spiroplasma, Mycoplasma, and Mesoplasma species, we found that the absence of glpO in S. diminutum and S. sabaudiense is best explained by independent losses. Finally, our phylogenetic analyses revealed possible recombination of glpO between distantly related lineages and local rearrangements of adjacent genes

    Revealing the Superfluid Lambda Transition in the Universal Thermodynamics of a Unitary Fermi Gas

    Full text link
    We have observed the superfluid phase transition in a strongly interacting Fermi gas via high-precision measurements of the local compressibility, density and pressure down to near-zero entropy. Our data completely determine the universal thermodynamics of strongly interacting fermions without any fit or external thermometer. The onset of superfluidity is observed in the compressibility, the chemical potential, the entropy, and the heat capacity. In particular, the heat capacity displays a characteristic lambda-like feature at the critical temperature of Tc/TF=0.167(13)T_c/T_F = 0.167(13). This is the first clear thermodynamic signature of the superfluid transition in a spin-balanced atomic Fermi gas. Our measurements provide a benchmark for many-body theories on strongly interacting fermions, relevant for problems ranging from high-temperature superconductivity to the equation of state of neutron stars.Comment: 11 pages, 8 figure
    corecore